I was bored and wrote a wrapper around openSSL to do AES encryption with less work. If I do it like this: http://pastebin.com/V1eqz4jp (ivec = 0)
Everything works fine, but the default ivec is all 0's, which has some security problems. Since I'm passing the data back as a string anyway, I figured, why not generate a random ivec and stick it to the front, the take it back off when I decrypt the string? For some reason it doesn't work though.Well actually, it almost works. It seems to decrypt the middle of the string, but not the beginning or end:
String is: 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
Encrypting..
���l%%1u���B!
�����`pN)�ɶ���[l�ӏ��{�Q�?�2�/�HԵ�y"�=Z�Cu����l%%1u���B!
Decrypting..
String is: �%���G*�5J�0��0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
I honestly have no idea what's going wrong. Maybe some stupid mistake, or maybe I'm missing something about AES?
Here's the code: (Edited to incorporate Steve Jessop's solution to my first problem)
/*!
* Simple AES
* Brendan Long
* March 29, 2010
*
* Simplified encryption and decryption using OpenSSL's AES library.
* Remember to compile with -lcrypto and link against the library
* g++ (your stuff) -lcrypto simpleAes.cpp (or simpleAes.o)
*
* Implementation note: Using the default ivec (0) is not secure. For
* the full security that AES offers, use a different
* ivec each time (it does not need to be secre开发者_Go百科t,
* just different.
*
* This code is released into the public domain. Yada yada..
* Read this for details: http://creativecommons.org/licenses/publicdomain/
*
* If for some reason public domain isn't good enough, you may use, alter,
* distribute or do anything else you want with this code with no restrictions.
*/
#include <openssl/aes.h>
#include <iostream>
#include <stdlib.h>
#include <time.h>
bool seed = true;
/*!
* Encrypts a string using AES with a 256 bit key
* Note: If the key is less than 32 bytes, it will be null padded.
* If the key is greater than 32 bytes, it will be truncated
* \param in The string to encrypt
* \param key The key to encrypt with
* \return The encrypted data
*/
std::string aes_encrypt(std::string in, std::string key){
// Seed the random number generator once
if(seed){
srand( (unsigned int) time(NULL));
seed = false;
}
// Generate a random ivec
unsigned char ivec[16];
for(int i=0; i<16; i++){
ivec[i] = (unsigned char) rand();
}
// Round up to AES_BLOCK_SIZE
size_t textLength = ((in.length() / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE;
// Always pad the key to 32 bits.. because we can
if(key.length() < 32){
key.append(32 - key.length(), '\0');
}
// Get some space ready for the output
unsigned char *output = new unsigned char[textLength];
// Generate a key
AES_KEY *aesKey = new AES_KEY;
AES_set_encrypt_key((unsigned char*)key.c_str(), 256, aesKey);
// Encrypt the data
AES_cbc_encrypt((unsigned char*)in.c_str(), output, in.length() + 1, aesKey, ivec, AES_ENCRYPT);
// Make the data into a string
std::string ret((char*) output, textLength);
// Add the ivec to the front
ret = std::string((char*)ivec, 16) + ret;
// Clean up
delete output;
delete aesKey;
return ret;
}
/*!
* Decrypts a string using AES with a 256 bit key
* Note: If the key is less than 32 bytes, it will be null padded.
* If the key is greater than 32 bytes, it will be truncated
* \param in The string to decrypt
* \param key The key to decrypt with
* \return The decrypted data
*/
std::string aes_decrypt(std::string in, std::string key){
// Get the ivec from the front
unsigned char ivec[16];
for(int i=0;i<16; i++){
ivec[i] = in[i];
}
in = in.substr(16);
// Always pad the key to 32 bits.. because we can
if(key.length() < 32){
key.append(32 - key.length(), '\0');
}
// Create some space for output
unsigned char *output = new unsigned char[in.length()];
// Generate a key
AES_KEY *aesKey = new AES_KEY;
AES_set_decrypt_key((unsigned char*)key.c_str(), 256, aesKey); // key length is in bits, so 32 * 8 = 256
// Decrypt the data
AES_cbc_encrypt((unsigned char*)in.c_str(), output, in.length(), aesKey, ivec, AES_DECRYPT);
// Make the output into a string
std::string ret((char*) output);
// Clean up
delete output;
delete aesKey;
return ret;
}
You should save the ivec[16] into 'output' BEFORE encrypting. That's it...
I'd also like to add that it'll be much simpler to work with char* instead of string.
This line is wrong:
std::string ret((char*) output);
The decrypted data doesn't have a nul terminator, since you encrypted in.length()
bytes. That accounts for the garbage at the end, but not the garbage at the beginning. There may be other problems as well.
A friend of mine figured out the problem. I'm doing this:
- Generate random number and store it in
ivec
- Encrypt data with
ivec
- Append ivec to beginning of output data
The problem is that step 2 changes the contents of ivec. I was basically storing random numbers at the beginning of my string. The solution was to add this:
unsigned char ivec[16];
// set ivec to random numbers
std::string ivecString((char*) ivec, 16);
// encrypt data
return ivecString + encryptedData;
In general, you cannot treat the output of the encryption stage as a string, unless you perform an additional step, such as Base 64 encoding the output. Any output byte could be a nul.
精彩评论