I have done database optimization for dbs upto 3GB size. Need a really large database t开发者_高级运维o test optimization.
Simply generating a lot of data and throwing it into a table proves nothing about the DBMS, the database itself, the queries being issued against it, or the applications interacting with them, all of which factor into the performance of a database-dependent system.
The phrase "I have done database optimization for [databases] up to 3 GB" is highly suspect. What databases? On what platform? Using what hardware? For what purposes? For what scale? What was the model? What were you optimizing? What was your budget?
These same questions apply to any database, regardless of size. I can tell you first-hand that "optimizing" a 250 GB database is not the same as optimizing a 25 GB database, which is certainly not the same as optimizing a 3 GB database. But that is not merely on account of the database size, it is because databases that contain 250 GB of data invariably deal with requirements that are vastly different from those addressed by a 3 GB database.
There is no magic size barrier at which you need to change your optimization strategy; every optimization requires in-depth knowledge of the specific data model and its usage requirements. Maybe you just need to add a few indexes. Maybe you need to remove a few indexes. Maybe you need to normalize, denormalize, rewrite a couple of bad queries, change locking semantics, create a data warehouse, implement caching at the application layer, or look into the various kinds of vertical scaling available for your particular database platform.
I submit that you are wasting your time attempting to create a "really big" database for the purposes of trying to "optimize" it with no specific requirements in mind. Various data-generation tools are available for when you need to generate data fitting specific patterns for testing against a specific set of scenarios, but until you have that information on hand, you won't accomplish very much with a database full of unorganized test data.
The best way to do this is to create your schema and write a script to populate it with lots of random(ish) dummy data. Random, meaning that your text-fields don't necessarily have to make sense. 'ish', meaning that the data distribution and patterns should generally reflect your real-world DB usage.
Edit: a quick Google search reveals a number of commercial tools that will do this for you if you don't want to write your own populate scripts: DB Data Generator, DTM Data Generator. Disclaimer: I've never used either of these and can't really speak to their quality or usefulness.
Here is a free procedure I wrote to generate Random person names. Quick and dirty, but it works and might help.
http://www.joebooth-consulting.com/products/genRandNames.sql
I use Red-Gate's Data Generator regularly to test out problems as well as loads on real systems and it works quite well. That said, I would agree with Aaronnaught's sentiment in that the overall size of the database isn't nearly as important as the usage patterns and the business model. For example, generating 10 GB of data on a table that will eventually get no traffic will not provide any insight into optimization. The goal is to replicate the expected transaction and storage loads you anticipate to occur in order to identify bottlenecks before they occur.
精彩评论