I am attempting to use DirectShow to play two AVI files consecutively (one after the other) so that there is no interruption in the audio or video when the player transitions from one file to the next.
I have two custom controls on my form. Each one is pre-loaded with an AVI file, and before playback begins I set up all the DirectShow interfaces, set the video windows and resize them, call IMediaControl.Run(), then IMediaControl.Pause(), then IMediaSeeking.SetPositions to reset to frame 0, on both controls. On the form, you can see that both files are paused at their initial frames.
I then call IMediaControl.Run() on the first control, and wait for it to complete before calling Run() on the second control. Initially, I hooked into the first video's EC_COMPLETE notification message, and used this to start the second. Thinking that this event might be slow to arrive (turns out it is, but for a weird reason), I tried two other approaches:
- Check the first video's current position inside a timer that goes off every second or so (using IMediaPosition.get_CurrentPosition). When the current position is within a second of the video's stop time (known in advance from IMediaPosition.get_StopTime), I go into a tight
while
loop and wait for the current position to equal the stop time, and then call Run() on the second video. - Same as the first, except I replace the
while
loop with a call totimeSetEvent
fromwinmm.dll
, with a delay set so that it fires right when the first file is supposed to end. I use the callback to Run() the second file.
Either of these two methods substantially cuts down the delay between the end of the first file and the beginning of the second, indicating that the EC_COMPLETE message doesn't arrive immediately after the file is complete (I also tried hooking the EC_SEGMENT_COMPLETE message, which is supposed to be used for looping within a file, but apparently nobody supports this - it never occurs on my machine, at least).
Doing all of the above has cut the transition delay from as much as a second, down to a barely perceptible glitch; about a third of the time the files transition with no interruption at all, which suggests there's no fundamental reason I can't get this to work all the time.
The slight delay is still unacceptable, unfortunately. I assume (and I could easily be wrong) that the remaining delay is due to a slight variable delay between the call to IMediaControl.Run() and when the video actually starts playing.
Does anybody know anything I can do to eliminate this little lag? It would also help to be told this is fundamentally impossible for whatever reason, which wouldn't surprise me. I've never encountered a video player in Windows that doesn't have this problem, so it may not be doable.
More info: the AVI files I'm playing are completely uncompressed (video and audio are uncompressed), so I don't think the lag is due to DirectShow's having to uncompress the video ahead of play start, although it may still buffer ahead as matter of course (and this may be the source of the problem). I would have though that starting play, pausing and then rewinding 开发者_运维知识库to the beginning would fix this.
Also, the way I'm handling the transition is to actually have the second control underneath the first; when the first completes playing, I start the second and then call BringToFront on it, creating the appearance of a single video transitioning between the two originals. I don't think the glitch is due to this, because it works perfectly some of the time, and even if this were problematic, it wouldn't explain the matching audio glitch.
Even more: I just tried starting the second video 30-50 milliseconds "early" and that seemed to eliminate even more of the gap, so I'm guessing that the lag in Run() is about that long. It appears to be variable, though, so this is still not where I need it to be.
Still more: perhaps I could eliminate this delay by loading the AVIs from memory rather than from a file. Unfortunately, I have no idea how to do this. IMediaControl only has a RenderFile()
method, not something like a RenderStream
or RenderMemory
method.
If you call IMediaControl::Run on a stopped graph, the graph manager will post the call to a worker thread (so there's some variability). On the worker thread, the graph will be paused. Render filters only complete a pause transition once they have received data, so once GetState() returns S_OK, the graph manager knows that the graph is fully cued. At this point, it picks a time roughly 10ms into the future, and calls Run on each filter with that time as the start point. Since it takes time to tell each filter to Run, the dshow Run method has a parameter which is the refclock time at which a sample timestamped zero should be played -- i.e. the time at which the actual transition to run mode should take place.
To synchronise this with another graph, you first have to ensure that both graphs have the same clock. Query the graph (not the filter) for IMediaFilter, and call GetSyncSource on one graph and SetSyncSource on the other. Then you need to pause the second graph, so that it is cued and ready. When you want to start it, call IMediaFilter::Run instead of IMediaControl::Run, and you can pass your own start time. This still has to be a few milliseconds into the future, so the best thing might be to set the start time of the second graph to be the first graph's start time plus its duration (for an indexed container of uncompressed streams, the duration should be accurate).
Another approach is to use multiple graphs. Separating source from rendering would allow you to switch seamlessly between sources since they feed into a common render graph. There is sample source code for this approach at www.gdcl.co.uk/gmfbridge.
G
精彩评论