So I'm attempting to use a queue to parse some input, turning prefix mathematical expressions into infix mathematical expressions with parentheses. For example: +++12 20 3 4 turns into (((12+20)+3)+4). For the most part, my algorithm works, except for one specific thing. When the numbers are greater than 2 digits long, the output becomes strange. I'll give you some examples instead of attempting to explain.
Examples: +++12 200 3 4 becomes (((12+3)+3)+4)
+++12 2000 3 4 becomes (((12+20004)+3)+4)
+++12 20005 3 4 becomes (((12+20004)+3)+4)
+++12 20005 3 45 becomes (((12+20004)+3)+45)
+++12 20005 3 456 becomes (((12+20004)+3)+()
Hopefully that's enough examples, if you need more, just ask.
I'm using GCC 4.2 in XCode on Mac OSX 10.6.2.
And here is the code that does this wonderful thing:
#include "EParse.h"
#include <iostream>
#include <iomanip>
EParse::EParse( char* s )
{
this->s = s;
len = strlen( s );
}
void EParse::showParsed()
{
parse( s, 0, len, new std::queue< char* >(), new std::queue< char >() );
}
void EParse::parse( char* str, int beg, int len, std::queue< char* > *n, std::queue< char > *ex )
{
//ex is for mathematical expressions (+, -, etc.), n is for numbers
if( beg == len )
{
if( ex->size() > n->size() )
{
std::cout << "Malformed expression. Too many mathematical expressions to too few numbers." << std::endl;
std::cout << ex->size() << " mathematical expressions." << std::endl;
std::cout << n->size() << " number(s)." << std::e开发者_如何转开发ndl;
return;
}
else
{
std::string *s = new std::string();
output( n, ex, 0, s );
std::cout << s->c_str();
return;
}
}
if( str[ beg ] == ' ' && beg != ( len - 1 ) )
beg++;
if( num( str[ beg ] ) )
{
std::string *s = new std::string();
getNum( s, str, beg, len );
//std::cout << s->c_str() << std::endl;
n->push( const_cast< char* >( s->c_str() ) );
delete s;
parse( str, beg, len, n, ex );
}
else if( mathexp( str[ beg ] ) )
{
ex->push( str[ beg ] );
parse( str, beg + 1, len, n, ex );
}
}
void EParse::getNum( std::string *s, char* str, int &beg, int len )
{
if( num( str[ beg ] ) )
{
char *t = new char[ 1 ];
t[ 0 ] = str[ beg ];
s->append( t );
beg += 1;
getNum( s, str, beg, len );
}
}
bool EParse::num( char c )
{
return c == '0' || c == '1' || c == '2' || c == '3' || c == '4' ||
c == '5' || c == '6' || c == '7' || c == '8' || c == '9';
}
bool EParse::mathexp( char c )
{
return c == '+' || c == '*' || c == '/' || c == '%' || c == '-';
}
void EParse::output( std::queue< char* > *n, std::queue< char > *ex, int beg, std::string *str )
{
if( ex->empty() )
{
return;
}
char *t = new char[1];
t[ 0 ] = ex->front();
ex->pop();
if( beg == 0 )
{
str->insert( 0, "(" );
str->append( n->front() );
beg += 1 + strlen( n->front() );
n->pop();
str->append( t );
str->append( n->front() );
str->append( ")" );
beg += 2 + strlen( n->front() );
n->pop();
}
else
{
str->insert( 0, "(" );
str->insert( beg, t );
str->insert( beg + 1, n->front() );
beg += 1 + strlen( n->front() );
str->insert( beg, ")" );
n->pop();
beg++;
}
//ex->pop();
output( n, ex, beg + 1, str );
//std::cout << str << std::endl;
}
If you need any commenting or explaining of what exactly certain stuff does, please let me know, I will be checking back here fairly often tonight.
While I don't have the exact answer to your problem, I did notice this:
std::string *s = new std::string();
getNum( s, str, beg, len );
//std::cout << s->c_str() << std::endl;
n->push( const_cast< char* >( s->c_str() ) );
delete s;
The problem there is you are pushing s
into the queue and then you are deleting it. The queue, then, will be referencing a string's value that no longer is valid, which could lead to the errors you are describing.
To make life a little easier for you, I would recommend changing your queue type to:
std::queue<std::string>
Then you can push and pop whole std::string
s instead of pointers to their data:
n->push(s);
Note that you'll have to change the APIs of your routines from taking a char*
to a std::string&
, but you will be able to modify the string's value like you did the char*.
Incidentally, you may wish to have another look at your memory management in that code above. Lots of new
allocations without delete
s there, so leaking memory.
精彩评论