Many windows APIs take a pointer to a buffer and a size element but the result needs to go into a c++ string. (I'm using windows unicode here so they are wstrings)
Here is an example :-
#include <iostream>
#include <string>
#include <vector>
#include <windows.h>
using namespace std;
// This is the method I'm interested in improving ...
wstring getComputerName()
{
vector<wchar_t> buffer;
buffer.resize(MAX_COMPUTERNAME_LENGTH+1);
DWORD size = MAX_COMPUTERNAME_LENGTH;
GetComputerNameW(&buffer[0], &size);
return wstring(&buffer[0], size);
}
int main()
{
wcout << getComputerName() << "\n";
}
My question really is, is this the best way to write the getComputerName function so that it fits into C++ better, or is there a better way? I don't see any way to use a string directly without going via a vector unless I missed something? It works fine, but somehow seems a little ugly. The question isn't about that particular API, it开发者_如何学JAVA's just a convenient example.
In this case, I don't see what std::vector brings to the party. MAX_COMPUTERNAME_LENGTH is not likely to be very large, so I would simply use a C-style array as the temporary buffer.
See this answer to another question. It provides the source to a StringBuffer class which handles this situation very cleanly.
I would say, since you are already at task of abstracting Windows API behind a more generic C++ interface, do away with vector altogether, and don't bother about wstring constructor:
wstring getComputerName()
{
wchar_t name[MAX_COMPUTERNAME_LENGTH + 1];
DWORD size = MAX_COMPUTERNAME_LENGTH;
GetComputerNameW(name, &size);
return name;
}
This function will return a valid wstring object.
I'd use the vector. In response to you saying you picked a bad example, pretend for a moment that we don't have a reasonable constant upper bound on the string length. Then it's not quite as easy:
#include <string>
#include <vector>
#include <windows.h>
using std::wstring;
using std::vector;
wstring getComputerName()
{
DWORD size = 1; // or a bigger number if you like
vector<wchar_t> buffer(size);
while ((GetComputerNameW(&buffer[0], &size) == 0))
{
if (GetLastError() != ERROR_BUFFER_OVERFLOW) aargh(); // handle error
buffer.resize(++size);
};
return wstring(&buffer[0], size);
}
In practice, you can probably get away with writing into a string, but I'm not entirely sure. You certainly need additional guarantees made by your implementation of std::wstring
, beyond what's in the standard, but I expect MSVC's strings are probably OK.
I think that if wstring::reference
is wchar_t&
then you're sorted. 21.3.4 defines that non-const operator[]
returns a reference
, and that it returns data()[pos]
. So if reference
is just a plain wchar_t&
then there's no scope for exciting copy-on-write behaviour through the reference, and the string must in fact be modifiable through the pointer &buffer[0]
. I think. The basic problem here is that the standard allowed implementations more flexibility than turned out to be needed.
That's a lot of effort and commenting though, just to avoid copying a string, so I've never felt the need to avoid an intermediate array/vector.
精彩评论