开发者

Generate all combinations of arbitrary alphabet up to arbitrary length

开发者 https://www.devze.com 2022-12-21 19:12 出处:网络
Say I have an array of arbitrary size holding single characters. I want to compute all possible combinations of those characters up to an arbitrary length.

Say I have an array of arbitrary size holding single characters. I want to compute all possible combinations of those characters up to an arbitrary length.

So lets say my array is [1, 2, 3]. The user-specified length is 2. Then the possible combinations are [11, 22, 33, 12, 13, 23, 21, 31, 32].

开发者_运维技巧I'm having real trouble finding a suitable algorithm that allows arbitrary lengths and not just permutates the array. Oh and while speed is not absolutely critical, it should be reasonably fast too.


Just do an add with carry.

Say your array contained 4 symbols and you want ones of length 3.

Start with 000 (i.e. each symbol on your word = alphabet[0])

Then add up:

000 001 002 003 010 011 ...

The algorithm (given these indices) is just to increase the lowest number. If it reaches the number of symbols in your alphabet, increase the previous number (following the same rule) and set the current to 0.

C++ code:

int N_LETTERS = 4;
char alphabet[] = {'a', 'b', 'c', 'd'};

std::vector<std::string> get_all_words(int length)
{
  std::vector<int> index(length, 0);
  std::vector<std::string> words;

  while(true)
  {
    std::string word(length);
    for (int i = 0; i < length; ++i)
      word[i] = alphabet[index[i]];
    words.push_back(word);

    for (int i = length-1; ; --i)
    { 
      if (i < 0) return words;
      index[i]++;
      if (index[i] == N_LETTERS)
        index[i] = 0;
      else
        break;
    }
  }
}

Code is untested, but should do the trick.


Knuth covers combinations and permutations in some depth in The Art of Computer Programming, vol 1. Here is an implementation of one of his algorithms I wrote some years ago (don't hate on the style, its ancient code):

#include <algorithm>
#include <vector>
#include <functional>
#include <iostream>
using namespace std;

template<class BidirectionalIterator, class Function, class Size>
Function _permute(BidirectionalIterator first, BidirectionalIterator last, Size k, Function f, Size n, Size level)
{
    // This algorithm is adapted from Donald Knuth, 
    //      "The Art of Computer Programming, vol. 1, p. 45, Method 1"
    // Thanks, Donald.
    for( Size x = 0; x < (n-level); ++x )   // rotate every possible value in to this level's slot
    {
        if( (level+1) < k ) 
            // if not at max level, recurse down to twirl higher levels first
            f = _permute(first,last,k,f,n,level+1);
        else
        {
            // we are at highest level, this is a unique permutation
            BidirectionalIterator permEnd = first;
            advance(permEnd, k);
            f(first,permEnd);
        }
        // rotate next element in to this level's position & continue
        BidirectionalIterator rotbegin(first);
        advance(rotbegin,level);
        BidirectionalIterator rotmid(rotbegin);
        rotmid++;
        rotate(rotbegin,rotmid,last);
    }
    return f;
}

template<class BidirectionalIterator, class Function, class Size>
Function for_each_permutation(BidirectionalIterator first, BidirectionalIterator last, Size k, Function fn)
{
    return _permute<BidirectionalIterator,Function,Size>(first, last, k, fn, distance(first,last), 0);
}   





template<class Elem>
struct DumpPermutation : public std::binary_function<bool, Elem* , Elem*>
{
    bool operator()(Elem* begin, Elem* end) const
    {
        cout << "[";
        copy(begin, end, ostream_iterator<Elem>(cout, " "));
        cout << "]" << endl;
        return true;
    }
};

int main()
{

    int ary[] = {1, 2, 3};
    const size_t arySize = sizeof(ary)/sizeof(ary[0]);

    for_each_permutation(&ary[0], &ary[arySize], 2, DumpPermutation<int>());

    return 0;
}

Output of this program is:

[1 2 ]
[1 3 ]
[2 3 ]
[2 1 ]
[3 1 ]
[3 2 ]

If you want your combinations to include repeated elements like [11] [22] and [33], you can generate your list of combinations using the algorithm above, and then append to the generated list new elements, by doing something like this:

for( size_t i = 0; i < arySize; ++i )
{
    cout << "[";
    for( int j = 0; j < k; ++j )
        cout << ary[i] << " ";
    cout << "]" << endl;
}

...and the program output now becomes:

[1 2 ]
[1 3 ]
[2 3 ]
[2 1 ]
[3 1 ]
[3 2 ]
[1 1 ]
[2 2 ]
[3 3 ]


One way to do it would be with a simple counter that you internally interpret as base N, where N is the number of items in the array. You then extract each digit from the base N counter and use it as an index into your array. So if your array is [1,2] and the user specified length is 2, you have

Counter = 0, indexes are 0, 0
Counter = 1, indexes are 0, 1
Counter = 2, indexes are 1, 0
Counter = 3, indexes are 1, 1

The trick here will be your base-10 to base-N conversion code, which isn't terribly difficult.


If you know the length before hand, all you need is some for loops. Say, for length = 3:

for ( i = 0; i < N; i++ )
   for ( j = 0; j < N; j++ )
      for ( k = 0; k < N; k++ )
         you now have ( i, j, k ), or a_i, a_j, a_k

Now to generalize it, just do it recursively, each step of the recursion with one of the for loops:

recurse( int[] a, int[] result, int index)
    if ( index == N ) base case, process result
    else
        for ( i = 0; i < N; i++ ) {
           result[index] = a[i]
           recurse( a, result, index + 1 )
        }

Of course, if you simply want all combinations, you can just think of each step as an N-based number, from 1 to k^N - 1, where k is the length.

Basically you would get, in base N (for k = 4):

0000 // take the first element four times
0001 // take the first element three times, then the second element
0002 
...
000(N-1) // take the first element three times, then take the N-th element
1000 // take the second element, then the first element three times
1001 
..
(N-1)(N-1)(N-1)(N-1) // take the last element four times


Using Peter's algorithm works great; however, if your letter set is too large or your string size too long, attempting to put all of the permutations in an array and returning the array won't work. The size of the array will be the size of the alphabet raised to the length of the string.

I created this in perl to take care of the problem:

package Combiner;
#package used to grab all possible combinations of a set of letters. Gets one every call, allowing reduced memory usage and faster processing.
use strict;
use warnings;

#initiate to use nextWord
#arguments are an array reference for the list of letters and the number of characters to be in the generated strings.
sub new {
    my ($class, $phoneList,$length) = @_;
    my $self = bless {
        phoneList => $phoneList,
        length => $length,
        N_LETTERS => scalar @$phoneList,
    }, $class;
    $self->init;
    $self;
}

sub init {
    my ($self) = shift;
    $self->{lindex} = [(0) x $self->{length}];
    $self->{end} = 0;
    $self;
}

#returns all possible combinations of N phonemes, one at a time. 
sub nextWord {
    my $self = shift;
    return 0 if $self->{end} == 1;
    my $word = [('-') x $self->{length}];

    $$word[$_] = ${$self->{phoneList}}[${$self->{lindex}}[$_]]
        for(0..$self->{length}-1);

    #treat the string like addition; loop through 000, 001, 002, 010, 020, etc.
    for(my $i = $self->{length}-1;;$i--){
         if($i < 0){
            $self->{end} = 1;
            return $word;
         }
         ${$self->{lindex}}[$i]++;
         if (${$self->{lindex}}[$i] == $self->{N_LETTERS}){
            ${$self->{lindex}}[$i] = 0;
         }
         else{
            return $word;
         }
    }
}

Call it like this: my $c = Combiner->new(['a','b','c','d'],20);. Then call nextWord to grab the next word; if nextWord returns 0, it means it's done.


Here's my implementation in Haskell:

g :: [a] -> [[a]] -> [[a]]
g alphabet = concat . map (\xs -> [ xs ++ [s] | s <- alphabet])

allwords :: [a] -> [[a]]
allwords alphabet = concat $ iterate (g alphabet) [[]]

Load this script into GHCi. Suppose that we want to find all strings of length less than or equal to 2 over the alphabet {'a','b','c'}. The following GHCi session does that:

*Main> take 13 $ allwords ['a','b','c']
["","a","b","c","aa","ab","ac","ba","bb","bc","ca","cb","cc"]

Or, if you want just the strings of length equal to 2:

*Main> filter (\xs -> length xs == 2) $ take 13 $ allwords ['a','b','c']
["aa","ab","ac","ba","bb","bc","ca","cb","cc"]

Be careful with allwords ['a','b','c'] for it is an infinite list!


This is written by me. may be helpful for u...

#include<stdio.h>
#include <unistd.h>
void main()
{
FILE *file;
int i=0,f,l1,l2,l3=0;
char set[]="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890!@#$%&*.!@#$%^&*()";
int size=sizeof(set)-1;
char per[]="000";
//check urs all entered details here//
printf("Setlength=%d Comination are genrating\n",size);

// writing permutation here for length of 3//
for(l1=0;l1<size;l1++)
//first for loop which control left most char printed in file//
{ 
per[0]=set[l1];
// second for loop which control all intermediate char printed in file//
for(l2=0;l2<size;l2++)
{
per[1]=set[l2];
//third for loop which control right most char printed in file//
for(l3=0;l3<size;l3++)
{
per[2]=set[l3];
//apend file (add text to a file or create a file if it does not exist.//
file = fopen("file.txt","a+");
//writes array per to file named file.txt// 
fprintf(file,"%s\n",per); 
///Writing to file is completed//
fclose(file); 
i++;
printf("Genrating Combination  %d\r",i);
fflush(stdout);``
usleep(1);
}
}
}
printf("\n%d combination has been genrate out of entered data of length %d \n",i,size);
puts("No combination is left :) ");
puts("Press any butoon to exit");
getchar();
}
0

精彩评论

暂无评论...
验证码 换一张
取 消