开发者

Slicing at runtime

开发者 https://www.devze.com 2022-12-20 18:15 出处:网络
can someone explain me how to slice a numpy.array at runtime? I don\'t know the rank (number of di开发者_运维技巧mensions) at \'coding time\'.

can someone explain me how to slice a numpy.array at runtime? I don't know the rank (number of di开发者_运维技巧mensions) at 'coding time'.

A minimal example:

import numpy as np
a = np.arange(16).reshape(4,4) # 2D matrix
targetsize = [2,3] # desired shape

b_correct = dynSlicing(a, targetsize)
b_wrong = np.resize(a, targetsize)

print a
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
print b_correct
[[0 1 2]
 [4 5 6]]
print b_wrong
[[0 1 2]
 [3 4 5]]

And my ugly dynSlicing():

def dynSlicing(data, targetsize):
    ndims = len(targetsize)

    if(ndims==1):
        return data[:targetsize[0]],
    elif(ndims==2):
        return data[:targetsize[0], :targetsize[1]]
    elif(ndims==3):
        return data[:targetsize[0], :targetsize[1], :targetsize[2]]
    elif(ndims==4):
        return data[:targetsize[0], :targetsize[1], :targetsize[2], :targetsize[3]]

Resize() will not do the job since it flats the array before dropping elements.

Thanks, Tebas


Passing a tuple of slice objects does the job:

def dynSlicing(data, targetsize):
    return data[tuple(slice(x) for x in targetsize)]


Simple solution:

b = a[tuple(map(slice,targetsize))]


You can directly 'change' it. This is due to the nature of arrays only allowing backdrop.

Instead you can copy a section, or even better create a view of the desired shape: Link

0

精彩评论

暂无评论...
验证码 换一张
取 消