开发者

Binary tree to get minimum element in O(1)

开发者 https://www.devze.com 2022-12-20 16:20 出处:网络
I\'m accessing the minimum element of a binary tree lots of开发者_开发技巧 times. What implementations allow me to access the minimum element in constant time, rather than O(log n)?Depending on your o

I'm accessing the minimum element of a binary tree lots of开发者_开发技巧 times. What implementations allow me to access the minimum element in constant time, rather than O(log n)?


Depending on your other requirements, a min-heap might be what you are looking for. It gives you constant time retrieval of the minimum element.

However you cannot do some other operations with the same ease as with a simple binary search tree, like determining if a value is in the tree or not. You can take a look at splay trees, a kind of self-balancing binary tree that provides improved access time to recently accessed elements.


Find it once in O(log n) and then compare new values which you are going to add with this cached minimum element.

UPD: about how can this work if you delete the minimum element. You'll just need to spend O(log n) one more time and find new one.

Let's imagine that you have 10 000 000 000 000 of integers in your tree. Each element needs 4 bytes in memory. In this case all your tree needs about 40 TB of harddrive space. Time O (log n) which should be spent for searching minimum element in this huge tree is about 43 operations. Of course it's not the simplest operations but anyway it's almost nothing even for 20 years old processors.

Of course this is actual if it's a real-world problem. If for some purposes (maybe academical) you need real O(1) algorithm then I'm not sure that my approach can give you such performance without using additional memory.


This may sound silly, but if you mostly access the minimum element, and don't change the tree too much, maintaining a pointer to the minimal element on add/delete (on any tree) may be the best solution.


Walking the tree will always be O(log n). Did you write the tree implementation yourself? You can always simply stash a reference to the current lowest value element alongside your data structure and keep it updated when adding/removing nodes. (If you didn't write the tree, you could also do this by wrapping the tree implementation in your own wrapper object that does the same thing.)


There is a implementation in the TAOCP that uses the "spare" pointers in non-full nodes to complete a double linked list along the nodes in order (I don't recall the detail right now, but I image you have to have a "has_child" flag for each direction to make it work).

With that and a start pointer, you could have the starting element in O(1) time.

This solution is not faster or more efficient that caching the minimum.


If by minimum element you mean element with the smallest value then you could use TreeSet with a custom Comparator which sorts the items into correct order to store individual elements and then just call SortedSet#first() or #last() to get the biggest/smallest values as efficiently as possible.

Note that inserting new items to TreeSet is slightly slow compared to other Sets/Lists but if you don't have a huge amount of elements which constantly change then it shouldn't be a problem.


If you can use a little memory it sounds like a combined collection might work for you.

For instance, what you are looking for sounds a lot like a linked list. You can always get to the minimum element but an insert or lookup of an arbitrary node might take longer because you have to do a lookup O(n)

If you combine a linked list and a tree you might get the best of both worlds. To look up an item for get/insert/delete operations you would use the tree to find the element. The element's "holder" node would have to have ways to cross over from the tree to the linked list for delete operations. Also the linked list would have to be a doubly linked list.

So I think getting the smallest item would be O(1), any arbitrary lookup/delete would be O(logN)--I think even an insert would be O(logN) because you could find where to put it in the tree, look at the previous element and cross over to your linked list node from there, then add "next".

Hmm, this is starting to seem like a really useful data structure, perhaps a little wasteful in memory, but I don't think any operation would be worse than O(logN) unless you have to re balance the tree.


If you upgrade / "upcomplex" your binary tree to a threaded binary tree, then you can get O(1) first and last elements.

You basically keep a reference to the current first and last nodes.

Immediately after an insert, if first's previous is non-null, then update first. Similarly for last.

Whenever you remove, you first check whether the node being removed is the first or last. And update that stored first, last appropriately.

0

精彩评论

暂无评论...
验证码 换一张
取 消