Consider this code:
#include <stdio.h>
#define N 5
void printMatrix(int (*matrix)[N],int n)
{
int i,j;
for(i=0;i开发者_Go百科<n;i++){
for(j=0;j<n;j++)
printf("%d",matrix[i][j]);
printf("\n");
}
}
int main()
{
int R[N][N]={{1,2,3},{4,5,6},{7,8,9}};
printMatrix(R,3);
}
This works fine as expected.
Now, I thought to write the functions handling 2D-matrices in a separate source file and link them wherever required. But then I ran into a problem as in the functionprintMatrix
, the size of array of int
to which matrix
points (i.e N
) is required at compile-time. So, my functions would not work in other cases when the size is different.
So,How can I handle this?
Dynamic Arrays are a solution but i want to know if it can be done with static arrays.You can't use the built-in 2D array type if both sizes are not known at compile time. A built-in 2D array must have at least one of the two sizes known at compile time.
If both sizes are run-time values, then you have no other choice but to use a "manual" implementation of 2D array, like an array of pointers to arrays, for example. In that case the function declaration might look as follows (two alternative equivalent forms)
void printMatrix(int *const *matrix, int n, int m);
void printMatrix(int *const matrix[], int n, int m);
To access to the array elements you can still use the "traditional" syntax
matrix[i][j]
The array itself would be created as follows (a simple example)
int row0[] = { 1, 2, 3 };
int row1[] = { 4, 5, 6 };
int *matrix[2];
matrix[0] = row0;
matrix[1] = row1;
printMatrix(matrix, 2, 3);
But if you already have a matrix implemented as a built-in 2d array
int matrix[2][3] = { ... };
then just to be able to pass it to the above function you can "convert" it into the above form by using an additional temporary "row pointer" array
int *rows[2];
rows[0] = matrix[0];
rows[1] = matrix[1];
printMatrix(rows, 2, 3);
Write yourself a macro:
#define MAT(i,j) matrix[i*n + j];
and declare "matrix" as a simple pointer to an "int".
Calculate the array index yourself. This will handle an arbitrary two dimensional array, for example:
void printMatrix(int *matrix,int n, int m)
{
int i,j;
for(i=0;i<n;i++){
for(j=0;j<m;j++)
printf("%d",matrix[m * i + j]);
printf("\n");
}
}
Don't try to pass it as a 2-D array; pass a pointer to the first element, then compute offsets manually:
void printMatrix(int *a, size_t m, size_t n)
{
size_t i,j;
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
{
printf("a[%lu][%lu] = %d\n",
(unsigned long) i,
(unsigned long) j,
a[i*n+j]); // treat a as 1-d array, compute offset manually
}
}
}
int main(void)
{
int arr[5][4];
...
printMatrix(&arr[0][0], 5, 4);
...
}
Granted, this will only work for contiguously allocated arrays.
Although the syntax is not exactly the same, but this also happens to work a bit:
#include <stdio.h>
#define N 5
void printMatrix(int* row,int n,int sz)
{
int i,j;
int *currRow;
for(i=0;i<n;i++){
currRow = row+i*sz;
for(j=0;j<n;j++)
printf("%d",currRow[j]);
printf("\n");
}
}
int main()
{
int R[N][N]={{1,2,3},{4,5,6},{7,8,9}};
printMatrix(R[0],3,sizeof(R[0])/sizeof(int));
}
精彩评论