this question relates to performance penalities that may or may not arise from having a large number of sleeping python threads on a webserver.
Background: I am implementing an online shop using django/satchmo. A requirement is for delayed payment. The customer can reserve a product and allow a third party to pay for it at a later date (via a random and unique URL).
To handle unreserving an item I am creating a thread which will sleep for the reservation time and then remove the reservation/mark the product as sold when it awakes. It looks like this:
#Reserves a product when it is placed in the cart
def reserve_cart_product(product):
log.debug("Reserving %s" % product.name)
product.active = False
product.featured = False
product.save()
from threading import Timer
Timer(CART_RESERVE_TIME, check_reservation, (product,)).start()
I am using the same technique when culling the unique URLs after they have expired, only the Timer sleeps for much longer (typically 5 days).
So, my question to you SO is as follows:
Is having a large numnber of sleeping threads going to seriously effect performance? Are there better techniques for scheduling a one off event s开发者_如何转开发ometime in the future. I would like to keep this in python if possible; no calling at
or cron
via sys
.
The site isn't exactly high traffic; a (generous) upper limit on products ordered per week would be around 100. Combined with cart reservation, this could mean there are 100+ sleeping threads at any one time. Will I regret scheduling tasks in this manner?
Thanks
I see no reason why this shouldn't work. The underlying code for Timer (in threading.py) simply uses time.sleep. Once it's been waiting for awhile, it basically runs a loop with time.sleep(0.05) This should result in CPU usage of basically 0%, even with hundreds of threads. Here's a simple example, where I noticed 0% cpu usage for the python process:
import threading
def nothing():
pass
def testThreads():
timers = [threading.Timer(10.0, nothing) for _ in xrange(881)]
print "Starting threads."
map(threading.Thread.start, timers)
print "Joining threads."
map(threading.Thread.join, timers)
print "Done."
if __name__ == "__main__":
testThreads()
The real issue is that you may not be able to actually start too many threads. On my 64-bit 4GB system, I can only start 881 threads before I get an error. If you really will only have a few hundred, though, I can't imagine it won't work.
100 threads is no problem, but as tgray pointed out, what happens if the server goes down (Power cut, Planned Maintenance, Hardware failure, etc.)?
You need to store the unreservation information in your database somewhere.
Then you can have a cron job periodically trigger an unreservation script for example, and you don't need to have all those threads sitting around.
If you really don't want to use cron, just have one worker thread that sleeps for a minute and then checks whether any of the unreservations are due.
Usually, sleeping threads have no overhead aside from the memory allocated for their stacks and other private data. Modern Operating System scheduling algorithms have complexity O(1) so even a running thread does not introduce overhead, other than memory footprint. At the same time, it is hard to imagine efficient design requiring a lot of threads. Only case I can imagine is communication with many other peers. In this case - asynchronous IO should be used.
精彩评论