开发者

gluLookAt and glFrustum with a moving object

开发者 https://www.devze.com 2023-04-12 08:52 出处:网络
Original Question/Code I am fine tuning the rendering for a 3D object and attempting to implement a camera following the object using gluLookAt because the object\'s center y position constantly incr

Original Question/Code

I am fine tuning the rendering for a 3D object and attempting to implement a camera following the object using gluLookAt because the object's center y position constantly increases once it reaches it's maximum height. Below is the section of code where I setup the ModelView and Projection matrices:

float diam = std::max(_framesize, _maxNumRows);
float centerX = _framesize / 2.0f;
float centerY = _maxNumRows / 2.0f + _cameraOffset;
float centerZ = 0.0f;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(centerX - diam,
          centerX + diam,
          centerY - diam,
          centerY + diam,
          diam,
          40 * diam);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0., 0., 2. * diam, centerX, centerY, centerZ, 0, 1.0, 0.0);

Currently the object displays very far away and appears to move further back into the screen (-z) and down (-y) until it eventually disappears.

What am I doing wrong? How can I get my surface to appear in the center of the screen, taking up the full view, and the camera moving开发者_开发百科 with the object as it is updated?


Updated Code and Current Issue

This is my current code, which is now putting the object dead center and filling up my window.

float diam = std::max(_framesize, _maxNumRows);
float centerX = _framesize / 2.0f;
float centerY = _maxNumRows / 2.0f + _cameraOffset;
float centerZ = 0.0f;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(centerX - diam,
          centerX,
          centerY - diam,
          centerY,
          1.0,
          1.0 +  4 * diam);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(centerX, _cameraOffset, diam, centerX, centerY, centerZ, 0, 1.0, 0.0);

I still have one problem when the object being viewed starts moving it does not stay perfectly centered. It appears to almost jitter up by a pixel and then down by 2 pixels when it updates. Eventually the object leaves the current view. How can I solve this jitter?


Your problem is with the understanding what the projection does. In your case glFrustum. I think the best way to explain glFrustum is by a picture (I just drew -- by hand). You start of a space called Eye Space. It's the space your vertices are in after they have been transformed by the modelview matrix. This space needs to be transformed to a space called Normalized Device Coordinates space. This happens in a two fold process:

  1. The Eye Space is transformed to Clip Space by the projection (matrix)
  2. The perspective divide {X,Y,Z} = {x,y,z}/w is applied, taking it into Normalized Device Coordinate space.

The visible effect of this is that of kind of a "lens" of OpenGL. In the below picture you can see a green highlighted area (technically it's a 3 volume) in eye space that, is the NDC space backprojected into it. In the upper case the effect of a symmetric frustum, i.e. left = -right, top = -bottom is shown. In the bottom picture an asymmetric frustum, i.e. left ≠ -right, top ≠ -bottom is shown.

gluLookAt and glFrustum with a moving object

Take note, that applying such an asymmetry (by your center offset) will not turn, i.e. rotate your frustum, but skew it. The "camera" however will stay at the origin, still pointing down the -Z axis. Of course the center of image projection will shift, but that's not what you want in your case.

Skewing the frustum like that has applications. Most importantly it's the correct method to implement the different views of left and right eye an a stereoscopic rendering setup.


The answer by Nicol Bolas pretty much tells what you're doing wrong so I'll skip that. You are looking for an solution rather than telling you what is wrong, so let's step right into it.

This is code I use for projection matrix:

glViewport(0, 0, mySize.x, mySize.y);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fovy, (float)mySize.x/(float)mySize.y, nearPlane, farPlane);

Some words to describe it: glViewport sets the size and position of display place for openGL inside window. Dunno why, I alsways include this for projection update. If you use it like me, where mySize is 2D vector specifying window dimensions, openGL render region will ocuppy whole window. You should be familiar with 2 next calls and finaly that gluPerspective. First parameter is your "field of view on Y axis". It specifies the angle in degrees how much you will see and I never used anything else than 45. It can be used for zooming though, but I prefer to leave that to camera operating. Second parameter is aspect. It handles that if you render square and your window sizes aren't in 1:1 ratio, it will be still square. Third is near clipping plane, geometry closer than this to camera won't get rendered, same with farPlane but on contrary it sets maximum distance in what geometry gets rendered.

This is code for modelview matrix

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(  camera.GetEye().x,camera.GetEye().y,camera.GetEye().z,
camera.GetLookAt().x,camera.GetLookAt().y,camera.GetLookAt().z,
camera.GetUp().x,camera.GetUp().y,camera.GetUp().z);

And again something you should know: Again, you can use first 2 calls so we skip to gluLookAt. I have camera class that handles all the movement, rotations, things like that. Eye, LookAt and Up are 3D vectors and these 3 are really everything that camera is specified by. Eye is the position of camera, where in space it is. LookAt is the position of object you're looking at or better the point in 3D space at which you're looking because it can be really anywhere not just center object. And if you are worried about what's Up vector, it's really simple. It's vector perpedicular to vector(LookAt-Eye), but becuase there's infinite number of such vectors, you must specify one. If your camera is at (0,0,0) and you are looking at (0,0,-1) and you want to be standing on your legs, up vector will be (0,1,0). If you'd like to stand on your head instead, use (0,-1,0). If you don't get the idea, just write in comment.

As you don't have any camera class, you need to store these 3 vectors separately by yourself. I believe you have something like center of 3D object you're moving. Set that position as LookAt after every update. Also in initialization stage(when you're making the 3D object) choose position of camera and up vector. After every update to object position, update the camera position the same way. If you move your object 1 point up at Y axis, do the same to camera position. The up vectors remains constant if you don't want to rotate camera. And after every such update, call gluLookAt with updated vectors.

For updated post: I don't really get what's happening without bigger frame of reference (but I don't want to know it anyway). There are few things I get curious about. If center is 3D vector that stores your object position, why are you setting the center of this object to be in right top corner of your window? If it's center, you should have those +diam also in 2nd and 4th parameter of glOrtho, and if things get bad by doing this, you are using wrong names for variables or doing something somewhere before this wrong. You're setting the LookAt position right in your updated post, but I don't find why you are using those parameters for Eye. You should have something more like: centerX, centerY, centerZ-diam as first 3 parameters in gluLookAt. That gives you the camera on the same X and Y position as your object, but you will be looking on it along Z axis from distance diam


The perspective projection matrix generated by glFrustum defines a camera space (the space of vertices that it takes as input) with the camera at the origin. You are trying to create a perspective matrix with a camera that is not at the origin. glFrustum can't do that, so the way you're attempting to do it simply will not work.

There are ways to generate a perspective matrix where the camera is not at the origin. But there's really no point in doing that.

The way a moving camera is generally handled is by simply adding a transform from the world space to the camera space of the perspective projection. This just rotates and translates the world to be relative to the camera. That's the job of gluLookAt. But your parameters to that are wrong too.

The first three values are the world space location of the camera. The next three should be the world-space location that the camera should look at (the position of your object).

0

精彩评论

暂无评论...
验证码 换一张
取 消