My homework was to provide a function that computes 'x^y mod n' -for any n < (sqrt maxint32)
So I started by writing doing this:
modPow :: Int -> Int -> Int -> Int
modPow x y n = (x `mod` n) ^ (y `mod` n) `mod` n
Which seemed to work fine, for any number of n, although my next homework question involved using x^n mod n = x (Camichael numbers) and I could never get modPow to work.
So I made another modPow using pseudocode for mod exponentiation, -from wikipedia:
modPow2 :: Int -> Int -> Int -> Int
modPow2 x y n
= loopmod 1 1
where
loopmod count total = if count > y
then total
else loopmod (count+1) ((total*x) `mod` n)
Whi开发者_如何学运维ch now correctly produces the right answer for my next question, (x^n mod n = x) -for checking for Camichael numbers.
ALTHOUGH, modPow2 does not work for big numbers of 'y' (STACK-OVERFLOW!!)
How could I adjust modPow2 so it no longer gets a stackoverflow in the cases where y > 10,000 (but still less than sqrt of maxint 32 -which is around 46,000)
Or is there a fix on my original modPow so it works with x^n mod n = x? (I always do 560 561 561 as inputs and it gives me back 1 not 560 (561 is a carmichael number so should give 560 back)
Thanks alot.
Your formula for modPow
is wrong, you can't just use y mod n as the exponent, it will lead to wrong results. For example:
Prelude> 2^10
1024
Prelude> 2^10 `mod` 10
4
Prelude> 2^(10 `mod` 10) `mod` 10
1
For a better modPow
function you could use that x2n+1 = x2n ⋅ x
and x2n = xn ⋅ xn
and that for multiplication you actually can simply use the mod
of the factors.
Where did you get your formula for modPow
from?
(x ^ y) `mod` n
= ((x `mod` n) ^ (y `mod` φ n)) `mod` n
where φ
is Euler's totient function.
This is probably because the argument total
is computed lazily.
If you use GHC, you can make loopmod
strict in total
by placing a ! in frontof the argument, i.e.
loopmod count !total = ...
Another way would be to force evaluation of total like so: Replace the last line with
else if total == 0 then 0 else loopmod (count+1) ((total*x) `mod` n)
This does not change semantics (because 0*x
is 0 anyway, so the reminder must be 0 also) and it forces hugs to evaluate total in every recursion.
If you are looking for implementation ( a^d mod n ) then
powM::Integer->Integer->Integer->Integer
powM a d n
| d == 0 = 1
| d == 1 = mod a n
| otherwise = mod q n where
p = powM ( mod ( a^2 ) n ) ( shiftR d 1 ) n
q = if (.&.) d 1 == 1 then mod ( a * p ) n else p
精彩评论