Given: n iterators, and a function to get a key for an item for each of them
Assuming:
- The iterators provide the items sorted by the key
- The keys from any iterator are unique
I want to iterate through them joined by the keys. Eg, given the following 2 lists:
[('a', {type:'x', mtime:Datetime()}), ('b', {type='y', mtime:Datetime()})]
[('b', Datetime()), ('c', Datetime())]
Using the first item in each tuple as the key, I want to ge开发者_运维知识库t:
(('a', {type:'x', mtime:Datetime()}), None)
(('b', {type:'y', mtime:Datetime()}), ('b', Datetime()),)
(None, ('c', Datetime()),)
So I hacked up this method:
def iter_join(*iterables_and_key_funcs):
iterables_len = len(iterables_and_key_funcs)
keys_funcs = tuple(key_func for iterable, key_func in iterables_and_key_funcs)
iters = tuple(iterable.__iter__() for iterable, key_func in iterables_and_key_funcs)
current_values = [None] * iterables_len
current_keys= [None] * iterables_len
iters_stoped = [False] * iterables_len
def get_nexts(iters_needing_fetch):
for i, fetch in enumerate(iters_needing_fetch):
if fetch and not iters_stoped[i]:
try:
current_values[i] = iters[i].next()
current_keys[i] = keys_funcs[i](current_values[i])
except StopIteration:
iters_stoped[i] = True
current_values[i] = None
current_keys[i] = None
get_nexts([True] * iterables_len)
while not all(iters_stoped):
min_key = min(key
for key, iter_stoped in zip(current_keys, iters_stoped)
if not iter_stoped)
keys_equal_to_min = tuple(key == min_key for key in current_keys)
yield tuple(value if key_eq_min else None
for key_eq_min, value in zip(keys_equal_to_min, current_values))
get_nexts(keys_equal_to_min)
and test it:
key_is_value = lambda v: v
a = ( 2, 3, 4, )
b = (1, )
c = ( 5,)
d = (1, 3, 5,)
l = list(iter_join(
(a, key_is_value),
(b, key_is_value),
(c, key_is_value),
(d, key_is_value),
))
import pprint; pprint.pprint(l)
which outputs:
[(None, 1, None, 1),
(2, None, None, None),
(3, None, None, 3),
(4, None, None, None),
(None, None, 5, 5)]
Is there an existing method to do this? I checkout itertools, but could not find anything.
Are there any ways to improve my method? Make it simpler, faster, etc..
Update: Solution used
I decided to simplify the contract for this function by requiring the iterators to yield tuple(key, value) or tuple(key, *values). Using agf's answer as a starting point, I came up with this :
def join_items(*iterables):
iters = tuple(iter(iterable) for iterable in iterables)
current_items = [next(itr, None) for itr in iters]
while True:
try:
key = min(item[0] for item in current_items if item != None)
except ValueError:
break
yield tuple(item if item != None and item[0]==key else None
for item in current_items)
for i, (item, itr) in enumerate(zip(current_items, iters)):
if item != None and item[0] == key:
current_items[i] = next(itr, None)
a = ( (2,), (3,), (4,), )
b = ((1,), )
c = ( (5,),)
d = ((1,), (3,), (5,),)
e = ( )
import pprint; pprint.pprint(list(join_items(a, b, c, d, e)))
[(None, (1,), None, (1,), None),
((2,), None, None, None, None),
((3,), None, None, (3,), None),
((4,), None, None, None, None),
(None, None, (5,), (5,), None)]
The example at the beginning of your question is different than at the end.
For the first example, I would do this:
x = [('a', {}), ('b', {})]
y = [('b', {}), ('c', {})]
xd, yd = dict(x), dict(y)
combined = []
for k in sorted(set(xd.keys()+yd.keys())):
row = []
for d in (xd, yd):
row.append((k, d[k]) if k in d else None)
combined.append(tuple(row))
for row in combined:
print row
gives
(('a', {}), None)
(('b', {}), ('b', {}))
(None, ('c', {}))
For the second example
a = ( 2, 3, 4, )
b = (1, )
c = ( 5,)
d = (1, 3, 5,)
abcd = map(set, [a,b,c,d])
values = sorted(set(a+b+c+d))
print [tuple(v if v in row else None for row in abcd) for v in values]
gives
[(None, 1, None, 1),
(2, None, None, None),
(3, None, None, 3),
(4, None, None, None),
(None, None, 5, 5)]
But what are you trying to accomplish? Perhaps you need different data structures.
a = ( 2, 3, 4, )
b = (1, )
c = ( 5,)
d = (1, 3, 5,)
iters = [iter(x) for x in (a, b, c, d)]
this = [next(i) for i in iters]
while True:
try:
key = min(i for i in this if i != None)
except ValueError:
break
for i, val in enumerate(this):
if val == key:
print val,
this[i] = next(iters[i], None)
else:
print None,
print
import itertools as it
import heapq
import pprint
def imerge(*iterables):
'''
http://code.activestate.com/recipes/491285-iterator-merge/
Author: Raymond Hettinger
Merge multiple sorted inputs into a single sorted output.
Equivalent to: sorted(itertools.chain(*iterables))
>>> list(imerge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
[0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]
'''
heappop, siftup, _StopIteration = heapq.heappop, heapq._siftup, StopIteration
h = []
h_append = h.append
for it in map(iter, iterables):
try:
next = it.next
h_append([next(), next])
except _StopIteration:
pass
heapq.heapify(h)
while 1:
try:
while 1:
v, next = s = h[0] # raises IndexError when h is empty
yield v
s[0] = next() # raises StopIteration when exhausted
siftup(h, 0) # restore heap condition
except _StopIteration:
heappop(h) # remove empty iterator
except IndexError:
return
a = ( 2, 3, 4, )
b = (1, )
c = ( 5,)
d = (1, 3, 5,)
def tag(iterator,val):
for elt in iterator:
yield elt,val
def expand(group):
dct=dict((tag,val)for val,tag in group)
result=[dct.get(tag,None) for tag in range(4)]
return result
pprint.pprint(
[ expand(group)
for key,group in it.groupby(
imerge(*it.imap(tag,(a,b,c,d),it.count())),
key=lambda x:x[0]
)])
Explanation:
- Life would be easier if we mergesort the iterators. This can be done
with
imerge
itertools.groupby
gives us the desired grouping if we feed it the
result fromimerge
. The rest is just niggling details.pprint.pprint( [ list(group) for key,group in it.groupby( imerge(a,b,c,d)) ] ) # [[1, 1], [2], [3, 3], [4], [5, 5]]
- From the output above, it is clear we need to keep track of the
source of each value -- (did the value come from
a
, orb
, etc.). That way we can pad the output withNone
s in the right places. To do that I used
it.imap(tag,(a,b,c,d),it.count())
.tag(a)
returns an iterator which yields values froma
along with a counter value.>>> list(tag(a,0)) # [(2, 0), (3, 0), (4, 0)]
The output now looks like this:
pprint.pprint( [ list(group) for key,group in it.groupby( imerge(*it.imap(tag,(a,b,c,d),it.count())), key=lambda x:x[0] )]) # [[(1, 1), (1, 3)], [(2, 0)], [(3, 0), (3, 3)], [(4, 0)], [(5, 2), (5, 3)]]
- Finally, we use
expand(group)
to change[(1, 1), (1, 3)]
into[None, 1, None, 1]
.
I realize the answer has already been decided. However I do think that a cleaner way can be written up using the defaultdict object from the collections library.
Here is an example from http://docs.python.org/release/2.6.7/library/collections.html
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
... d[k].append(v)
>>>>d.items()
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
精彩评论