I use a GTX 280, which has compute capability 1.3 and supports atomic operations on shared memory. I am using cuda SDK 2.2 and VS 2005. In my program I have to extensively use atomic operations because there is simply no other way.
One example is that I have to calculate the running sum of an array and find out the index where the sum exceeds a given cut off value. For this I am using a variant of scan algorithm and using atomicMin
to st开发者_StackOverflow中文版ore index while the value is less than the threshold. So this way at the end the shared memory would have the index where the value is just less than the threshold.
This is just one component of the kernel, and there are many similar code blocks in the kernel call.
I am having 3 problems
- Firstly I have not been able to compile the code as it say atomic operations are not defined, I have searched but not found which file I have to add.
- Second, I somehow managed to compile the code by copying it in the code provided by CUDA SDK, but then it is saying the atomic operations are not supported on shared memory, where as it is running in the following program
- Even when I worked around a hack by giving
-arch sm_12
in the command line compilation, the code snippet using these atomic operations are taking an awful lot of time.
I believe that in the worst case I should get some sort of speed up, because there are not very many atomic operations and I using 1 block of 16x16. Unfortunately the serial code in running 10x faster.
Below I am posting the kernel cod*, this kernel call seems to be the bottleneck if anyone could help me optimize then it would be nice. The serial code is just performing these actions in a serial manner. I am using a block configuration of 16 X 16.
The code seems to be lengthy but actually it contains an if code block and while code block that perform almost the same task, but they could not be merged.
#define limit (int)(log((float)256)/log((float)2))
// This receives a pointer to an image, some variables and 4 more arrays cont(of size 256) vars(some constants), lim and buf(of image size)
// block configuration 1 block of 16x16
__global__ void kernel_Main(unsigned char* in, int height,int width, int bs,int th, double cutoff, uint* cont,int* vars, unsigned int* lim,unsigned int* buf)
{
int j = threadIdx.x;
int i = threadIdx.y;
int k = i*blockDim.x+j;
__shared__ int prefix_sum[256];
__shared__ int sum_s[256];
__shared__ int ary_shared[256];
__shared__ int he_shared[256];
// this is the threshold
int cutval = (2*width*height)*cutoff;
prefix_sum[k] = cont[k];
int l;
// a variant of scan algorithm
for(l=0;l<=limit;l++)
{
sum_s[k]=prefix_sum[k];
if(k >= (int)pow((float)2,(float)l))
{
prefix_sum[k]+=sum_s[k-(int)pow((float)2,(float)l)];
// Find out the minimum index for which the cummulative sum crosses threshold
if(prefix_sum[k] > cutval)
{
atomicMin(&vars[cut],k);
}
}
__syncthreads();
}
// The first thread will store the value in global array
if(k==0)
{
vars[cuts]=prefix_sum[vars[cut]];
}
__syncthreads();
if(vars[n])
{
// bs = 7 in this case
if(i<bs && j<bs)
{
// using atomic add because the index could be same for 2 different threads
atomicAdd(&ary_shared[in[i*(width) + j]],1);
}
__syncthreads();
int minth = 1>((bs*bs)/20)? 1: ((bs*bs)/20);
prefix_sum[k] = ary_shared[k];
sum_s[k] = 0;
// Again prefix sum
int l;
for(l=0;l<=limit;l++)
{
sum_s[k]=prefix_sum[k];
if(k >= (int)pow((float)2,(float)l))
{
prefix_sum[k]+=sum_s[k-(int)pow((float)2,(float)l)];
// Find out the minimum index for which the cummulative sum crosses threshold
if(prefix_sum[k] > minth)
{
atomicMin(&vars[hmin],k);
}
}
__syncthreads();
}
// set the maximum value here
if(k==0)
{
vars[hminc]=prefix_sum[255];
// because we will always overshoot by 1
vars[hmin]--;
}
__syncthreads();
int maxth = 1>((bs*bs)/20)? 1: ((bs*bs)/20);
prefix_sum[k] = ary_shared[255-k];
for(l=0;l<=limit;l++)
{
sum_s[k]=prefix_sum[k];
if(k >= (int)pow((float)2,(float)l))
{
prefix_sum[k]+=sum_s[k-(int)pow((float)2,(float)l)];
// Find out the minimum index for which the cummulative sum crosses threshold
if(prefix_sum[k] > maxth)
{
atomicMin(&vars[hmax], k);
}
}
__syncthreads();
}
// set the maximum value here
if(k==0)
{
vars[hmaxc]=prefix_sum[255];
vars[hmax]--;
vars[hmax]=255-vars[hmax];
}
__syncthreads();
int rng = vars[hmax] - vars[hmin];
if(rng >= vars[cut])
{
if( k <= vars[hmin] )
he_shared[k] = 0;
else if( k >= vars[hmax])
he_shared[k] = 255;
else
he_shared[k] = (255 * (k - vars[hmin])) / rng;
}
__syncthreads();
// only 7x7 = 49 threads will do this
if(i>0 && i<=bs && j>0 && j<=bs)
{
int base = (vars[oy]*width+vars[ox])+ (i-1)*width + (j-1);
if(rng >= vars[cut])
{
int value = he_shared[in[base]];
buf[base]+=value;
lim[base]++;
}
else
{
buf[base]+=255;
lim[base]++;
}
}
if(k==0)
vars[n]--;
__syncthreads();
}// if(n) block closes here
while(vars[n])
{
if(k==0)
{
if( vars[ox]==0 && vars[d1] ==3 )
vars[d1] = 0; // l2r
else if( vars[ox]==0 && vars[d1]==2 )
vars[d1] = 3; // l u2d
else if( vars[ox]==width-bs && vars[d1]==0)
vars[d1] = 1; // r u2d
else if( vars[ox]==width-bs && vars[d1]==1)
vars[d1] = 2; // r2l
}
// Because this value will be changed so
// all the threads should set their registers before
// they move forward
int ox_d = vars[ox];
int oy_d = vars[oy];
// Just putting it here so that all the threads should have set their
// values before moving on, as this value will be changed
__syncthreads();
if(vars[d1]==0)
{
if(i == 0 && j < bs)
{
int index = j*width + ox_d + oy_d*width;
int index2 = j*width + ox_d + oy_d*width +bs;
atomicSub(&ary_shared[in[index]],1);
atomicAdd(&ary_shared[in[index2]],1);
}
// The first thread of the first block should set this value
if(k==0)
vars[ox]++;
}
else if(vars[d1]==1||vars[d1]==3)
{
if(i == 0 && j < bs)
{
/*if(j==0)
printf("Entered 1||3\n");*/
int index = j*width + ox_d + oy_d*width;
int index2 = j*width + ox_d + (oy_d+bs)*width;
atomicSub(&ary_shared[in[index]],1);
atomicAdd(&ary_shared[in[index2]],1);
}
// The first thread of the first block should set this value
if(k==0)
vars[oy]++;
}
else if(vars[d1]==2)
{
if(i == 0 && j < bs)
{
int index = j*width + ox_d-1 + oy_d*width;
int index2 = j*width + ox_d-1 + oy_d*width +bs;
atomicAdd(&ary_shared[in[index]],1);
atomicSub(&ary_shared[in[index2]],1);
}
// The first thread of the first block should set this value
if(k==0 )
vars[ox]--;
}
__syncthreads();
//ary_shared has been calculated
// Reset the hmin and hminc values
// again the same task as done in the if(n) loop
if(k==0)
{
vars[hmin]=0;
vars[hminc]=0;
vars[hmax]=0;
vars[hmaxc]=0;
}
__syncthreads();
int minth = 1>((bs*bs)/20)? 1: ((bs*bs)/20);
prefix_sum[k] = ary_shared[k];
int l;
for(l=0;l<=limit;l++)
{
sum_s[k]=prefix_sum[k];
if(k >= (int)pow((float)2,(float)l))
{
prefix_sum[k]+=sum_s[k-(int)pow((float)2,(float)l)];
// Find out the minimum index for which the cummulative sum crosses threshold
if(prefix_sum[k] > minth)
{
atomicMin(&vars[hmin],k);
}
}
__syncthreads();
}
// set the maximum value here
if(k==0)
{
vars[hminc]=prefix_sum[255];
vars[hmin]--;
}
__syncthreads();
// Calculate maxth
int maxth = 1>((bs*bs)/20)? 1: ((bs*bs)/20);
prefix_sum[k] = ary_shared[255-k];
for(l=0;l<=limit;l++)
{
sum_s[k]=prefix_sum[k];
if(k >= (int)pow((float)2,(float)l))
{
prefix_sum[k]+=sum_s[k-(int)pow((float)2,(float)l)];
// Find out the minimum index for which the cummulative sum crosses threshold
if(prefix_sum[k] > maxth)
{
atomicMin(&vars[hmax], k);
}
}
__syncthreads();
}
// set the maximum value here
if(k==0)
{
vars[hmaxc]=prefix_sum[255];
vars[hmax]--;
vars[hmax]=255-vars[hmax];
}
__syncthreads();
int rng = vars[hmax] - vars[hmin];
if(rng >= vars[cut])
{
if( k <= vars[hmin] )
he_shared[k] = 0;
else if( k >= vars[hmax])
he_shared[k] = 255;
else
he_shared[k] = (255 * (k - vars[hmin])) / rng;
}
__syncthreads();
if(i>0 && i<=bs && j>0 && j<=bs)
{
int base = (vars[oy]*width+vars[ox])+ (i-1)*width + (j-1);
if(rng >= vars[cut])
{
int value = he_shared[in[base]];
buf[base]+=value;
lim[base]++;
}
else
{
buf[base]+=255;
lim[base]++;
}
}
// This just might cause a little bit of problem
if(k==0)
vars[n]--;
// All threads will wait here before continuing the while loop
__syncthreads();
}// end of while(n)
}
Firstly you need -arch sm_12
(or in your case it should really be -arch sm_13
) to enable atomic operations.
As for performance, there is no guarantee that your kernel will be any faster than normal code on the CPU - there are many problems which really do not fit well into the CUDA model and these may indeed run much slower than on the CPU. You need to do some analysis/design/modelling before coding any CUDA kernels to prevent yourself wasting a lot of time on something that is never going to fly.
Having said that, there may be a way to implement your algo in a more efficient way - maybe you could post the CPU code and then invite ideas as to how to efficiently implement it in CUDA ?
精彩评论