开发者

How to make code using Value[T : Numeric] more “flexible” like the “unboxed” counterparts?

开发者 https://www.devze.com 2023-04-09 21:14 出处:网络
If I have code like 5 * 5.0 the result gets converted to the most accurate type, Double开发者_如何学Python.

If I have code like 5 * 5.0 the result gets converted to the most accurate type, Double开发者_如何学Python.

But this doesn't seem to work with code like

case class Value[T : Numeric](value: T) {
    type This = Value[T]
    def +(m: This) = Value[T](implicitly[Numeric[T]].plus(value, m.value))
    ...
}

implicit def numToValue[T : Numeric](v: T) = Value[T](v)

Is there a way to make things like someIntValue + double work, where someIntValue is Value[Int] and double is Double?

PS: Sorry for the far less-than-perfect title. I'm thankful for suggestions for better wording ...


You can do this (with a lot of busywork) by creating implicit operators:

abstract class Arith[A,B,C] {
  def +(a: A, b: B): C
  def -(a: A, b: B): C
  def *(a: A, b: B): C
  def /(a: A, b: B): C
}
implicit object ArithIntLong extends Arith[Int,Long,Long] {
  def +(a: Int, b: Long) = a+b
  def -(a: Int, b: Long) = a-b
  def *(a: Int, b: Long) = a*b
  def /(a: Int, b: Long) = a/b
}
...
def f[A,B,C](a: A, b: B)(implicit arith: Arith[A,B,C]) = arith.*(a,b)


scala> f(5,10L)
res46: Long = 50

but you really have to do more than that, since you need a Numeric equivalent for A and B alone, and the asymmetric operations need to be defined both ways. And it's not really practical to specialize given that there are three types involved.

0

精彩评论

暂无评论...
验证码 换一张
取 消