I have got a template method with two specialized versions for type bool
and vector<string>
.
Base version:
template <class T>
const T InternGetValue(const std::string& pfad) const
{
...
}
Specialized versions:
template <>
const bool InternGetValue(const std::string& pfad) const
{
...
}
te开发者_如何学Gomplate <>
const std::vector<std::string> InternGetValue< std::vector<std::string>>(const std::string& pfad) const
{
...
}
Now I would like to implement one specialization that will accept all types of vector<aritmethic_data_type>
like vector<double>
vector<int>
or vector<float>
.
I could achieve this by writing overloads for the above types, but I'm interested in reaching my goal with another specialization.
This is what I tried so far (leads to error 'illegal use of explicit template arguments'):
template <class T>
const std::vector<T> InternGetValue< std::vector<T>>(const std::string& pfad, typename boost::enable_if<boost::is_arithmetic<T>>::type* dummy = 0) const
{
}
I think std::enable_if
and std::is_integral
together can solve this problem:
template<typename T>
std::vector<typename std::enable_if<std::is_integral<T>::value, T>::type>
f(const std::string& d);
If std::
doesn't have them, then use boost::
if you can. It has them.
OK uber complicated, but I got it all working. I couldn't just check is_integral
on the value_type
type inside the first (default) function overload as this would cause SFINAE to remove the overload for non-vectors.
Unlike Nawaz's solution, this doesn't require a dummy parameter to be added, but it does require an enable_if condition on the default function template.
This works on VS2010.
#include <vector>
#include <string>
#include <type_traits>
using namespace std;
template <typename T> struct is_vector { static const bool value = false; };
template <typename T> struct is_vector< std::vector<T> > { static const bool value = true; };
// metafunction to extract what type a vector is specialised on
// vector_type<vector<T>>::type == T
template <class T>
struct vector_type
{
private:
template <class T>
struct ident
{
typedef T type;
};
template <class C>
static ident<C> test(vector<C>);
static ident<void> test(...);
typedef decltype(test(T())) vec_type;
public:
typedef typename vec_type::type type;
};
// default version
template <class T>
const typename enable_if<!is_vector<T>::value || !is_integral<typename vector_type<T>::type>::value, T>::type
InternGetValue(const std::string& pfad)
{
return T();
}
// bool specialisation
template <>
const bool
InternGetValue<bool>(const std::string& pfad)
{
return true;
}
// vector<string> specialisation
template <>
const vector<string>
InternGetValue<vector<string>>(const std::string& pfad)
{
return vector<string>();
}
// vector<T> specialisation (where T is integral)
template <class T>
const typename enable_if<is_vector<T>::value && is_integral<typename vector_type<T>::type>::value, T>::type
InternGetValue(const std::string& pfad)
{
return T();
}
int main()
{
string x;
auto a = InternGetValue<int>(x);
auto b = InternGetValue<bool>(x);
auto c = InternGetValue<vector<string>>(x);
auto d = InternGetValue<vector<pair<int, int>>>(x);
auto e = InternGetValue<vector<int>>(x);
}
精彩评论