开发者

Training set - proportion of pos / neg / neutral sentences

开发者 https://www.devze.com 2022-12-16 12:05 出处:网络
I am hand tagging twitter messages as Positive, Negative, Neutral. I am try to appreciate is there some logic one can use to identify of the training set what pro开发者_JS百科portion of message should

I am hand tagging twitter messages as Positive, Negative, Neutral. I am try to appreciate is there some logic one can use to identify of the training set what pro开发者_JS百科portion of message should be positive / negative and neutral ?

So for e.g. if I am training a Naive Bayes classifier with 1000 twitter messages should the proportion of pos : neg : neutral be 33 % : 33% : 33% or should it be 25 % : 25 % : 50 %

Logically in my head it seems that I i train (i.e. give more samples for neutral) that the system would be better at identifying neutral sentences then whether they are positive or negative - is that true ? or I am missing some theory here ?

Thanks Rahul


The problem you're referring to is known as the imbalance problem. Many machine learning algorithms perform badly when confronted with imbalanced training data, i.e. when the instances of one class heavily outnumber those of the other class. Read this article to get a good overview of the problem and how to approach it. For techniques like naive bayes or decision trees it is always a good idea to balance your data somehow, e.g. by random oversampling (explained in the references paper). I disagree with mjv's suggestion to have a training set match the proportions in the real world. This may be appropriate in some cases but I'm quite confident it's not in your setting. For a classification problem like the one you describe, the more the sizes of the class sets differ, the more most ML algorithms will have problems discriminating the classes properly. However, you can always use the information about which class is the largest in reality by taking it as a fallback such that when the classifier's confidence for a particular instance is low or this instance couldn't be classified at all, you would assign it the largest class.

One further remark: finding the positivity/negativity/neutrality in Twitter messages seems to me to be a question of degree. As such, it may be viewes as a regression rather than a classification problem, i.e. instead of a three class scheme you perhaps may want calculate a score which tells you how positive/negative the message is.


There are many other factors... but an important one (in determining a suitable ratio and volume of training data) is the expected distribution of each message category (Positive, Neutral, Negative) in the real world. Effectively, a good baseline for the training set (and the control set) is

  • [qualitatively] as representative as possible of the whole "population"
  • [quantitatively] big enough that measurements made from such sets is statistically significant.

The effect of the [relative] abundance of a certain category of messages in the training set is hard to determine; it is in any case a lesser factor -or rather one that is highly sensitive to- other factors. Improvements in the accuracy of the classifier, as a whole, or with regards to a particular category, is typically tied more to the specific implementation of the classifier (eg. is it Bayesian, what are the tokens, are noise token eliminated, is proximity a factor, are we using bi-grams etc...) than to purely quantitative characteristics of the training set.

While the above is generally factual but moderately helpful for the selection of the training set's size and composition, there are ways of determining, post facto, when an adequate size and composition of training data has been supplied.
One way to achieve this is to introduce a control set, i.e. one manually labeled but that is not part of the training set and to measure for different test runs with various subsets of the training set, the recall and precision obtained for each category (or some similar accuracy measurements), for this the classification of the control set. When these measurements do not improve or degrade, beyond what's statistically representative, the size and composition of the training [sub-]set is probably the right one (unless it is an over-fitting set :-(, but that's another issue altogether... )

This approach, implies that one uses a training set that could be 3 to 5 times the size of the training subset effectively needed, so that one can build, randomly (within each category), many different subsets for the various tests.

0

精彩评论

暂无评论...
验证码 换一张
取 消