Basically I have a bunch of rectangles floating around at 8 different angles (45 degrees, 90 degrees etc). I have collision detection going on between all of them, but one thing still doesn't work as it should. I don't know if I'm just not thinking or what开发者_如何学Go, but I can't seem to get the resulting angles right. I've also tried searching multiple places, but haven't really gained anything from what I've found.
NOTE: the angle system here starts at 0 at the top and increases clockwise.
NOTE: all rectangles have the same massSay one rectangle going straight right (90 degrees) hits another going straight left (270 degrees). They will hit off of each other just fine.
Now say one going left gets hit by one going up. Here I can't simply reverse the angles or anything.
If you have more than one way, consider the following: unless I rearrange the CD so it spreads into the other code, I have the positions of all of the rectangles. The CD checks by seeing if two are overlapping, not by comparing where they are going.
As I've been working on pretty much everything except for the collision detection until now, I only have tonight left to get it working and add a few other small things before I'm done.
If you know of a way to make the angles come out right without hardcoding, great. At this point I'm ready to hardcode it (not too much really) if all I have is which rectangle hits the other (ex 2), or if they both do (ex 1). Either one is really helpful.
I think you mean something like this...
Each Rectangle has this functionality, testing against, say an array of other objects.
Obstacle* obstacle = new Obstacle;
Obstacle** obstacles = obstacle*[];
For(int i = 0; i <3; i++)
{
obstacles[0] = New Obstacle(x,y, etc...);
etc...
}
Or something similar... this is a little rusty
void collision(obstacles)
{
for(int i = 0; i < obstacles.sizeOf();i++)
{
//bottom y
if((this.ypos + this.height) > (obstacles[i].ypos - obstacles[i].height))
obstacles[i].doYCollision(this);
//top y
if((this.ypos - this.height) < (obstacles[i].ypos + obstacles[i].height))
obstacles[i].doYCollision(this);
//right x
if((this.xpos + this.width) > (obstacles[i].xpos - obstacles[i].width))
obstacles[i].doXCollision(this);
//left x
if((this.xpos - this.width) < (obstacles[i].xpos + obstacles[i].width))
obstacles[i].doXCollision(this);
}
}
again im a little rusty but if you follow it you should be able to relaise what im doing.
then all you need is the resulting function calls.
void doYCollision(Obstacle obstacle)
{
// Whatever y direction they are going do the opposite
obstacle.yDir = obstacle.yDir * -1;
}
void doXCollision(Obstacle obstacle)
{
// Whatever x direction they are going do the opposite
obstacle.xDir = obstacle.xDir * -1;
}
where yDir, xDir is the x and y velocity of the current object.
i should point out again this is very rusty and without having some code from you this is the best ive got. but either way this should start you off into collision detection, the code above shoudl allow for all collisions with all obstacles/objects/pink flamingos/ whatever youve got. Im hoping also that itll do what you want when it comes to multiple collisions at the same time.
You shouldnt need to worry too much about the exact angle (unless you need it for something else), as velocity is a vector mass so has both speed and direction and you can get direction by treating x and y as two different elements. You can do this using the dot product method aswell => http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static, but if they are just rectangles this should be fine.
Hopes this helps
精彩评论