开发者

Parallel Subset

开发者 https://www.devze.com 2023-04-02 00:52 出处:网络
The setup: I have two arrays which are not sorted and are not of the same length. I want to see if one of the arrays is a subset of the other. Each array is a set in the sense that there are no duplic

The setup: I have two arrays which are not sorted and are not of the same length. I want to see if one of the arrays is a subset of the other. Each array is a set in the sense that there are no duplicates.

Right now I am doing this sequentially in a brute force manner so it isn't very fast. I am currently doing this subset method sequentially. I have been having trouble finding any algorithms online that A) go faster and B) are in parallel. Say the maximum size of开发者_开发百科 either array is N, then right now it is scaling something like N^2. I was thinking maybe if I sorted them and did something clever I could bring it down to something like Nlog(N), but not sure.

The main thing is I have no idea how to parallelize this operation at all. I could just do something like each processor looks at an equal amount of the first array and compares those entries to all of the second array, but I'd still be doing N^2 work. But I guess it'd be better since it would run in parallel.

Any Ideas on how to improve the work and make it parallel at the same time?

Thanks


Suppose you are trying to decide if A is a subset of B, and let len(A) = m and len(B) = n.

If m is a lot smaller than n, then it makes sense to me that you sort A, and then iterate through B doing a binary search for each element on A to see if there is a match or not. You can partition B into k parts and have a separate thread iterate through every part doing the binary search.

To count the matches you can do 2 things. Either you could have a num_matched variable be incremented every time you find a match (You would need to guard this var using a mutex though, which might hinder your program's concurrency) and then check if num_matched == m at the end of the program. Or you could have another array or bit vector of size m, and have a thread update the k'th bit if it found a match for the k'th element of A. Then at the end, you make sure this array is all 1's. (On 2nd thoughts bit vector might not work out without a mutex because threads might overwrite each other's annotations when they load the integer containing the bit relevant to them). The array approach, atleast, would not need any mutex that can hinder concurrency.

Sorting would cost you mLog(m) and then, if you only had a single thread doing the matching, that would cost you nLog(m). So if n is a lot bigger than m, this would effectively be nLog(m). Your worst case still remains NLog(N), but I think concurrency would really help you a lot here to make this fast.

Summary: Just sort the smaller array.

Alternatively if you are willing to consider converting A into a HashSet (or any equivalent Set data structure that uses some sort of hashing + probing/chaining to give O(1) lookups), then you can do a single membership check in just O(1) (in amortized time), so then you can do this in O(n) + the cost of converting A into a Set.

0

精彩评论

暂无评论...
验证码 换一张
取 消