开发者

Biztalk Ordered Delivery failure

开发者 https://www.devze.com 2022-12-16 03:46 出处:网络
We have a BizTalk application where the order of messages being inputted is very 开发者_如何学Pythonimportant and has to be kept, meaning they have to be outputted in the same order. Normally ordered

We have a BizTalk application where the order of messages being inputted is very 开发者_如何学Pythonimportant and has to be kept, meaning they have to be outputted in the same order. Normally ordered delivery would do the trick here.

However I read that ordered delivery is only guaranteed when you connect a receive location directly to a send port. The moment you use orchestrations the order delivery isn't guaranteed anymore. Is there a way to work around or fix this? Because this kind of ruins our whole application and we've been working on this for months.

I read a work around from Microsoft where they use an extra field which has a counter and where they use an end orchestration which checks the counters. But this is way too much work for us to do now. So this work around is a no go. Plus not all messages are translated which creates holes in our flow and not all messages are coming from the same source either which makes this work around useless anyway.

Any other ideas?


Check out this page. It explains that if you have an orchestration that follows the singleton pattern to ensure only one instance of the orchestration exists, and you make sure you set the orchestration's receive port to ordered delivery, than you should get a valid end-to-end ordered delivery scenario

To provide end-to-end ordered delivery the following conditions must be met:

Messages must be received with an adapter that preserves the order of the messages when submitting them to BizTalk Server. In BizTalk Server 2006, examples of such adapters are MSMQ, MQSeries, and MSMQT. In addition, HTTP or SOAP adapters can be used to submit messages in order, but in that case the HTTP or SOAP client needs to enforce the order by submitting messages one at a time.

You must subscribe to these messages with a send port that has the Ordered Delivery option set to True.

If an orchestration is used to process the messages, only a single instance of the orchestration should be used, the orchestration should be configured to use a sequential convoy, and the Ordered Delivery property of the orchestration's receive port should be set to True.


Resequencing strategies for ordered delivery in BizTalk:

I recently responded to a LinkedIn user's question regarding ordered delivery options in BizTalk.

I thought it would be useful for people to understand some of the strategies for re-sequencing messages using BizTalk.

Often as an BizTalk Developer, you are required to integrate to line-of-business systems which are unchangeable. This can be for one or more of many different reasons. As an example, the cost of changing a system can be too high or the vendor license states that support may be withdrawn if the system is changed.

This would not normally represent a problem where the vendor has provided a thoughtfully designed API as a point-of-integration endpoint. However, as many Integration Developers quickly learn, this is very rarely the case.

What do I mean by a thoughtfully designed API? Well, aside from all the SODA principals (service composition, fault contracts etc.), the most important feature of an API is to support the consumption of data which arrives in the wrong order.

This is a fairly simple thing to do. For example, if you are a vendor and you provide a HTTP operation as your integration point then one of the fields you could expose on your operation is a time-stamp or, even better, a sequence number. This means that if a call is made with an out-of-date payload, the relevant compensating mechanism can kick-in - which can be as simple as discarding the data.

This article discusses what to do when the vendor has not built this feature into an API, and as an integrator you therefore are forced to implement end-to-end ordered delivery as part of your integration solution.

As stated in my response to the user's post on LinkedIn (see link above), in BizTalk ordered delivery in any but the simplest of scenarios is complicated at best and at worst can represent a huge cost in increased complexity, both in terms of development and support. The basic reason is that BizTalk is designed to be massively concurrent to enable high throughput, and there is a direct and unavoidable conflict between concurrency and ordering. Shoe-horning E2E ordered delivery into a BizTalk solution relies on artefacts such as singleton orchestrations which introduce complexity and increase both failure rate and cost-per-failure numbers.

A far better solution is to maintain concurrent processing to as near as possible to the line-of-business system endpoints, and then implement what is called a re-sequencer wrapper around each of the endpoints which require data to be delivered in the correct order.

How to implement such a wrapper in BizTalk depends on some factors, which are outlined in the following table:

|Sequencing    |Messages|Database    |Wrapper                           |
|field         |are     |integration?|strategy                          |
|              |deltas? |            |                                  |
|--------------|--------|------------|----------------------------------|
|n of a total m| N      | Y          |Stored procedure                  |
|n of a total m| N      | N          |Singleton orchestration           |
|n of a total m| Y      | Y          |Batched singleton orchestration   |
|n of a total m| Y      | N          |Batched singleton orchestration   |
|Timestamp     | N      | Y          |Stored procedure                  |
|Timestamp     | N      | N          |Singleton orchestration           |
|Timestamp     | Y      | Y          |Buffer table with staggered reader|
|Timestamp     | Y      | N          |Buffer table with staggered reader|

The first factor Sequencing field relates to the idea that in order to implement any kind of re-sequencer wrapper, as a minimum you will require that your message data contains some sequencing information. This can take the form of a source time-stamp; however a better, though rarer, kind of sequencing information consists of a sequence number combined with the total number of messages, for example, message 1 of 10, 2 of 10, etc..

The second factor Messages are deltas? relates to whether or not the payload of your message contains a single state change to the data or the sum of all past changes to the data. Put another way, is it possible to reconstruct the full current state of the data from this message? If the message payload contains just a single change then it may not be possible to reconstruct the state of the data from the single message, and in this instance your message is a delta.

The third factor Database integration? relates to whether or not the integration-entry-point to a system is a database. The reason this matters is that integrating at the database layer is a fairly common integration scenario, and if available can greatly simplify handling re-sequencing.

The strategies from the above table are described in detail below:

Stored procedure wrapper This is the simplest of the resequencing strategies. A new stored procedure is created which queries the target data before making a decision about whether to update the target data. The decision can be as simple as Is the data I have newer than the data in the target system?

Of course, in order to implement this strategy, the target data also has to include the sequencing field of the source data, although an approximation can be made if necessary by relying on existing time-stamps which may already exist in the target data. The stored procedure wrapper can be contained either in the target database or ideally in a separate database.

Singleton orchestration wrapper The idea behind this strategy is the singleton orchestration. This is a pattern you can implement to ensure that only a single instance of the orchestration will exist at any one time. There are many articles on the web demonstrating how to implement this pattern in BizTalk.

The core of the idea is that the singleton simply keeps a track of the most recent successfully processed message sequence (or time-stamp). If the singleton receives a message which is older than the most recent sequence it is simply discarded. This works because the messages are non-deltas, so the target system can commit only the most recent of a number of messages and the data will be in the most recent state. Only when data is committed successfully is the most recent sequence held by the singleton updated.

Batched singleton orchestration wrapper This strategy is based on the Singleton orchestration wrapper above, except it is more complex. Rather than only keep the most recent sequence information in memory the singleton is required to create and hold a working set of messages in memory which it will re-order and then process once all expected messages from the batch have arrived. This is because the messages are deltas so the target system MUST receive each message in the order they were intended. Once the batch has been sent successfully the singleton can terminate.

To do this it is a requisite of the source data that it contain a correlation identifier of some description which allows the batch of messages to be defined. For example, processing a defined set of orders from a customer, the inbound messages must contain an identifier for the customer. This can then be used to route the messages to the singleton orchestration instance correlated with this customer. Furthermore the message sequence field available must be of the n of a total m form.

Once the singleton is initialised it assembles a working set of messages in memory and proceeds to populate it as new messages arrive. One way I have seen this done is using a System.Collections.Generic.List as the container for the working set. Once the list has been fully populated (list length = m) then it is assumed all messages in the batch have been received and the orchestration then loops over the working set in sequence and processes the messages into the target system.

One of the benefits of the batched singleton orchestration wrapper is it allows concurrent processing by correlation identifier. In the example above this means that messages from two customers would be processed concurrently.

Buffer table with staggered reader wrapper Arguably the most complex of the strategies presented, this solution is to be used when you have delta messaging with a time-stamp-based sequencing field. It can be implemented with a database of some description which acts as a re-sequencing buffer.

It is worth noting here that this re-sequencing wrapper does not guarantee ordered delivery, but used well it makes ordered delivery highly likely.

As messages arrive, they are written into the buffer and in the same operation the buffer is reordered, so that the order of messages held in the buffer are always correct.

To create the buffer reader, have a receive location which reads the messages in the buffer before passing the messages to a send port with ordered delivery enabled, which then will process the messages into the target system. You can also use a singleton orchestration as an intermediary if your target system's API semantics are too complex for a send port.

However, using this wrapper as I have described it above will not enable ordered delivery, as the messages will almost certainly be committed to the buffer in the wrong order, which will result in the messages being processed into the target system in the same (wrong) order. This is where the staggered query comes in. This is a fancy way of saying your buffer query needs to only select data at intervals of time T, AND only select those rows where the row-number is lower than buffer total row count minus C.

This has the effect of allowing sequencing to occur over an appropriate timespan. T will be familiar to most BizTalk developers as the polling interval of some adapters (such as the WCF-SQL adapter). C is slightly more difficult to set, but by increasing this number you are reducing the chances that when you poll, you will miss a message older than the most recent one in your retrieved data set.

What T and C are depends on many things, although these values should be based on your latency SLA and your message volume (or throughput). As a guideline, if you have a SLA to deliver data into your target system within 30 seconds and you process 10 messages per second then T should be around 10 seconds and C should be around 100 rows.

Of course this only works if your messages for a given correlation id are sent by the source system during a short space of time (ideally back-to-back). The longer the interval between sends, the greater the required value of C, and the less effective the wrapper becomes.

One of the benefits of this strategy is you can also perform de-duplication of messages in the buffer if your data source is prone to sending duplicate messages and your target system endpoint is not idempotent. You can also use the buffer to implement FILO and other non-standard queueing semantics.

Conclusions The strategies I have discussed here are ways of bending BizTalk to a task which is wasn't designed to do. As a result each has caveats around cost and complexity to support, and also may not work in certain scenarios. I would like to hear from anyone who has implemented other patterns for ordered delivery in BizTalk.

0

精彩评论

暂无评论...
验证码 换一张
取 消