I'm working on the MIT open courseware for CS-600 and I can't figure out why the last print statement isn't printing anything. Here's the code I wrote:
#!/usr/bin/env python
# encoding: utf-8
# 6.00 Problem Set 9
#
# Name:
# Collaborators:
# Time:
from string import *
class Shape(object):
def area(self):
raise AttributeException("Subclasses should override this method.")
class Square(Shape):
def __init__(self, h):
"""
h: length of side of the square
"""
self.side = float(h)
def area(self):
"""
Returns area of the square
"""
return self.side**2
def __str__(self):
return 'Square with side ' + str(self.side)
def __eq__(self, other):
"""
Two squares are equal if they have the same dimension.
other: object to check for equality
"""
return type(other) =开发者_如何学C= Square and self.side == other.side
class Circle(Shape):
def __init__(self, radius):
"""
radius: radius of the circle
"""
self.radius = float(radius)
def area(self):
"""
Returns approximate area of the circle
"""
return 3.14159*(self.radius**2)
def __str__(self):
return 'Circle with radius ' + str(self.radius)
def __eq__(self, other):
"""
Two circles are equal if they have the same radius.
other: object to check for equality
"""
return type(other) == Circle and self.radius == other.radius
#
# Problem 1: Create the Triangle class
#
## TO DO: Implement the `Triangle` class, which also extends `Shape`.
class Triangle(Shape):
def __init__(self, base, height):
self.base = float(base)
self.height = float(height)
def area(self):
return self.base*self.height/2
def __str__(self):
return 'Triangle with base ' + str(self.base) + 'and height ' + str(self.height)
def __eq__(self, other):
return type(other) == Triangle and self.base == other.base and self.height == other.height
#
# Problem 2: Create the ShapeSet class
#
## TO DO: Fill in the following code skeleton according to the
## specifications.
class ShapeSet(object):
def __init__(self):
"""
Initialize any needed variables
"""
self.allCircles = []
self.allSquares = []
self.allTriangles = []
self.allShapes = self.allCircles + self.allSquares + self.allTriangles
self.place = None
def addShape(self, sh):
"""
Add shape sh to the set; no two shapes in the set may be
identical
sh: shape to be added
"""
if not isinstance(sh, Shape): raise TypeError('not a shape')
if isinstance(sh, Square):
for sq in self.allSquares:
if sh == sq:
raise ValueError('shape already in the set')
self.allSquares.append(sh)
if isinstance(sh, Triangle):
for tri in self.allTriangles:
if sh == tri:
raise ValueError('shape already in the set')
self.allTriangles.append(sh)
if isinstance(sh, Circle):
for circ in self.allCircles:
if sh == circ:
raise ValueError('shape already in the set')
self.allCircles.append(sh)
def __iter__(self):
"""
Return an iterator that allows you to iterate over the set of
shapes, one shape at a time
"""
self.place = 0
return self
def next(self):
if self.place >= len(self.allShapes):
raise StopIteration
self.place += 1
return self.allShapes[self.place - 1]
def __str__(self):
"""
Return the string representation for a set, which consists of
the string representation of each shape, categorized by type
(circles, then squares, then triangles)
"""
shapeList = ""
for item in self.allShapes:
shapeList += item.get__str__ + "br/"
return shapeList
#
# Problem 3: Find the largest shapes in a ShapeSet
#
def findLargest(shapes):
"""
Returns a tuple containing the elements of ShapeSet with the
largest area.
shapes: ShapeSet
"""
## TO DO
#
# Problem 4: Read shapes from a file into a ShapeSet
#
def readShapesFromFile(filename):
"""
Retrieves shape information from the given file.
Creates and returns a ShapeSet with the shapes found.
filename: string
"""
## TO DO
def main():
sq1 = Square(4.0)
sq2 = Square(5.0)
sq3 = Square(3.0)
circ1 = Circle(3.0)
circ2 = Circle(3.2)
tri1 = Triangle(3.0, 4.0)
tri2 = Triangle(4.0, 3.0)
tri3 = Triangle(1.0, 1.0)
thisSet = ShapeSet()
thisSet.addShape(sq1)
thisSet.addShape(sq2)
thisSet.addShape(sq3)
thisSet.addShape(circ1)
thisSet.addShape(circ2)
thisSet.addShape(tri1)
thisSet.addShape(tri2)
thisSet.addShape(tri3)
print thisSet
if __name__ == '__main__':
main()
This line:
self.allShapes = self.allCircles + self.allSquares + self.allTriangles
doesn't do what you think it does. It sets allShapes
to an empty list, and then as you add shapes later, nothing updates allShapes
.
Then your __str__
function just loops over allShapes
, which is still empty, so your __str__
returns an empty string.
This line makes allShapes an empty list:
self.allShapes = self.allCircles + self.allSquares + self.allTriangles
If you modify allCircles, that doesn't affect allShapes. I would personally eliminate allShapes, and in the str method, add them at the last possible second:
for item in self.allCircles + self.allSquares + self.allTriangles:
The problem is here:
self.allShapes = self.allCircles + self.allSquares + self.allTriangles
When you concatenate lists like this, the result is a copy of the component lists. So when those lists are changed later, the concatenated list isn't changed. In this case, self.allCircles
, etc. are all empty. So self.allShapes
is an empty list too; the for loop in ShapeSet.__str__
doesn't append anything to ShapeList
, and so the result is an empty string.
One simple way to fix this would be to make allShapes
a method that you call, and that returns a new concatenation of self.allCircles
... etc. each time it's called. That way, allShapes
is always up-to-date.
If this is your actual code, then it must be because of
item.get__str__
which should raise an exception.
Edit: as others have noted, this isn't the actual problem, but I leave this here as a hint for further progress. Mind you, it's considered bad style ("unpythonic") to call x.__str__()
directly, as you probably intended. Call str(x)
instead, even in the implementation of __str__
.
You assign allShapes to be the value of self.allCircles + self.allSquares + self.allTriangles at the start in your init method (when the other lists are empty).
It's value is then never changed, so it remains empty.
You need this in addShape:
self.allShapes.append(sh)
精彩评论