I am trying to implement a channel vocoder using the iOS Accelerate vDSP FFT algorithms. I am having trouble figuring out how to treat the DC component and Nyquist frequency.
The modulator and carrier signals are both float arrays of length n. On each, I perform a forward FFT and am returned a frequency plot (call it bin[]) of length n/2.
As per the vDSP specifications, bin开发者_JS百科[1] contains the first frequency above 0Hz, bin[2] the second, etc... bin[0] contains the DC Component in the real part and the Nyquist frequency (which would normally be in bin[n/2]) in the imaginary part. vDSP essentially packs the frequency plot into as little space as possible (the imaginary part for bin[0] and bin[n/2] should always be zero before the packing).
I split the frequency plot for both carrier and modulator into k bands. My goal is to multiply each frequency in carrier.band[x] by the total magnitude of the frequencies in modulator.band[x]. Essentially, increasing the intensity of those frequencies in the carrier that are also present in the modulator.
So if n=8 and k=2, the second band for the modulator would contain contain bin[2] and bin[3]. Simple enough to find the total magnitude, simply sum the magnitudes of each bin (for example mag[2] = sqrt( bin[2].real*bin[2]*real + bin[2].imag*bin[2]*imag )).
That works great for all bands except the first one, because the first band contains the weird bin[0] with the DC component and Nyquist frequency.
How do I handle that first bin when calculating the total magnitude of a band? Do I just assume the magnitude for the first bin is JUST the DC component by itself? Do I discard the Nyquist frequency?
Thank you to anyone who can provide some guidance! I appreciate it.
I suggest you ignore 0 Hz and Nyquist since they contain no useful information in the case of an audio signal.
精彩评论