I have a Matlab figure I want to use in a paper. This figure contains multiple cdfplots. Now the problem is that I cannot use the markers because the become very dense in the plot. If i want to make the samples sparse I have to drop some samples from the cdfplot w开发者_开发技巧hich will result in a different cdfplot line.
How can I add enough markers while maintaining the actual line?
One method is to get XData/YData properties from your curves follow solution (1) from @ephsmith and set it back. Here is an example for one curve.
y = evrnd(0,3,100,1); %# random data
%# original data
subplot(1,2,1)
h = cdfplot(y);
set(h,'Marker','*','MarkerSize',8,'MarkerEdgeColor','r','LineStyle','none')
%# reduced data
subplot(1,2,2)
h = cdfplot(y);
set(h,'Marker','*','MarkerSize',8,'MarkerEdgeColor','r','LineStyle','none')
xdata = get(h,'XData');
ydata = get(h,'YData');
set(h,'XData',xdata(1:5:end));
set(h,'YData',ydata(1:5:end));
Another method is to calculate empirical CDF separately using ECDF function, then reduce the results before plotting with PLOT.
y = evrnd(0,3,100,1); %# random data
[f, x] = ecdf(y);
%# original data
subplot(1,2,1)
plot(x,f,'*')
%# reduced data
subplot(1,2,2)
plot(x(1:5:end),f(1:5:end),'r*')
Result
I know this is potentially unnecessary given MATLAB's built-in functions (in the Statistics Toolbox anyway) but it may be of use to other viewers who do not have access to the toolbox.
The empirical CMF (CDF) is essentially the cumulative sum of the empirical PMF. The latter is attainable in MATLAB via the hist
function. In order to get a nice approximation to the empirical PMF, the number of bins must be selected appropriately. In the following example, I assume that 64 bins is good enough for your data.
%# compute a histogram with 64 bins for the data points stored in y
[f,x]=hist(y,64);
%# convert the frequency points in f to proportions
f = f./sum(f);
%# compute the cumulative sum of the empirical PMF
cmf = cumsum(f);
Now you can choose how many points you'd like to plot by using the reduced data example given by yuk.
n=20 ; % number of total data markers in the curve graph
M_n = round(linspace(1,numel(y),n)) ; % indices of markers
% plot the whole line, and markers for selected data points
plot(x,y,'b-',y(M_n),y(M_n),'rs')
verry simple.....
try reducing the marker size.
x = rand(10000,1);
y = x + rand(10000,1);
plot(x,y,'b.','markersize',1);
For publishing purposes I tend to use the plot tools on the figure window. This allow you to tweak all of the plot parameters and immediately see the result.
If the problem is that you have too many data points, you can:
1). Plot using every nth sample of the data. Experiment to find an n that results in the look you want.
2). I typically fit curves to my data and add a few sparsely placed markers to plots of the fits to differentiate the curves.
Honestly, for publishing purposes I have always found that choosing different 'LineStyle'
or 'LineWidth'
properties for the lines gives much cleaner results than using different markers. This would also be a lot easier than trying to downsample your data, and for plots made with CDFPLOT I find that markers simply occlude the stairstep nature of the lines.
精彩评论