开发者

how can I code my own decorator utility for public interface types (how do dynamic proxies work)?

开发者 https://www.devze.com 2023-03-20 13:48 出处:网络
I\'ve noticed that sometimes entire frame works exist for things that have very simple basic cases (not a critisism).For example you can make a service locator with a few lines of code and a hashtable

I've noticed that sometimes entire frame works exist for things that have very simple basic cases (not a critisism). For example you can make a service locator with a few lines of code and a hashtable or you can use an entire framework.

That said, I'm curious if there's an equally simple way to do-it-yourself decorator. (correct me if I use the name of this pattern improperly, i'm new-sh to the term).

Motivation: I'm curious how things like Castle Dynamic Proxy work...

How开发者_高级运维 could you code MyContainer.Get(Action before, Action after)?

public interface IFoo { 
   void F(); 
}
public class Foo : IFoo { 
   public void F() { 
      Console.WriteLine("foo"); 
   } 
}
IFoo foo = MyContainer.Get<IFoo>(
   () => { Console.WriteLine("before foo"); }, 
   () => { Console.WriteLine("after foo"); });
foo.F();

Output would be:

before foo
foo
after foo


As I understand it, there are at least two ways of doing runtime code generation - if you're comfortable using IL you can use Reflection.Emit, otherwise you can use a CSharpCodeProvider which enables you to compile code at runtime from strings or from a series of objects which describe code in a DOM style.

This is literally the first I've used CSharpCodeProvider, but here's my stab at using it to create a proxy class for an interface at runtime. This is not a complete solution, but with the following provisos it should be a decent start:

  1. It doesn't include converting the Lambdas into strings. As I understand it though, this can be done.

  2. Creating a new compiler with every call will not perform well; you could cache compilers on a per-interface-type basis.

  3. After you compile the source code you can (and should) check the results object to make sure the compilation worked:

Here's the code:

public static T Get<T>(Action beforeMethodCall, Action afterMethodCall)
{
    Type interfaceType = typeof(T);

    // I assume MyContainer is wrapping an actual DI container, so
    // resolve the implementation type for T from it:
    T implementingObject = _myUnderlyingContainer.Resolve<T>();
    Type implementingType = implementingObject.GetType();

    // Get string representations of the passed-in Actions: this one is 
    // over to you :)
    string beforeMethodCode = GetExpressionText(beforeMethodCall);
    string afterMethodCode = GetExpressionText(afterMethodCall);

    // Loop over all the interface's methods and create source code which 
    // contains a method with the same signature which calls the 'before' 
    // method, calls the proxied object's method, then calls the 'after' 
    // method:
    string methodImplementations = string.Join(
        Environment.NewLine,
        interfaceType.GetMethods().Select(mi =>
        {
            const string methodTemplate = @"
public {0} {1}({2})
{{
    {3}
    this._wrappedObject.{1}({4});
    {5}
}}";
            // Get the arguments for the method signature, like 
            // 'Type1' 'Name1', 'Type', 'Name2', etc.
            string methodSignatureArguments = string.Join(
                ", ",
                mi.GetParameters()
                    .Select(pi => pi.ParameterType.FullName + " " + pi.Name));

            // Get the arguments for the proxied method call, like 'Name1', 
            // 'Name2', etc.
            string methodCallArguments = string.Join(
                ", ",
                mi.GetParameters().Select(pi => pi.Name));

            // Get the method return type:
            string returnType = (mi.ReturnType == typeof(void)) ?
                "void"
                :
                mi.ReturnType.FullName;

            // Create the method source code:
            return string.Format(
                CultureInfo.InvariantCulture,
                methodTemplate,
                returnType,               // <- {0}
                mi.Name,                  // <- {1}
                methodSignatureArguments, // <- {2}
                beforeMethodCode,         // <- {3}
                methodCallArguments,      // <- {4}
                afterMethodCode);         // <- {5}
        }));

    // Our proxy type name:
    string proxyTypeName = string.Concat(implementingType.Name, "Proxy");

    const string proxySourceTemplate = @"
namespace Proxies
{{
    public class {0} : {1}
    {{
        private readonly {1} _wrappedObject;

        public {0}({1} wrappedObject)
        {{
            this._wrappedObject = wrappedObject;
        }}
        {2}
    }}
}}";

    // Get the proxy class source code:
    string proxySource = string.Format(
        CultureInfo.InvariantCulture,
        proxySourceTemplate,
        proxyTypeName,          // <- {0}
        interfaceType.FullName, // <- {1}
        methodImplementations); // <- {2}

    // Create the proxy in an in-memory assembly:
    CompilerParameters codeParameters = new CompilerParameters
    {
        MainClass = null,
        GenerateExecutable = false,
        GenerateInMemory = true,
        OutputAssembly = null
    };

    // Add the assembly that the interface lives in so the compiler can 
    // use it:
    codeParameters.ReferencedAssemblies.Add(interfaceType.Assembly.Location);

    // Compile the proxy source code:
    CompilerResults results = new CSharpCodeProvider()
        .CompileAssemblyFromSource(codeParameters, proxySource);

    // Create an instance of the proxy from the assembly we just created:
    T proxy = (T)Activator.CreateInstance(
        results.CompiledAssembly.GetTypes().First(),
        implementingObject);

    // Hand it back:
    return proxy;
}
0

精彩评论

暂无评论...
验证码 换一张
取 消