开发者

Multi threaded insert using ORM?

开发者 https://www.devze.com 2023-03-18 07:15 出处:网络
I have one application where \"persisting to database\" is consuming 85% time of the entire application flow.

I have one application where "persisting to database" is consuming 85% time of the entire application flow.

I was thinking of using multiple threads to do the insert because inserts are mostly independent here. Is there any way to achieve multi threaded insert using any of JPA implementation ? Or is it worth do开发者_如何学Going the mutli threaded insert, from improving the performance perspective ?

Note: Inserts are in the range of 10K to 100K records in a single run. Also performance is very very critical here.

Thanks.


Multi-threading insert statements on database won't really make it perform any faster because in most databases the table requires a lock for an insert. So your threads will just be waiting for the one before it to finish up and unlock the table before the next can insert - which really doesn't make it any more multi-threaded than with a single thread. If you where to do it, it would most likely slow it down.

If you inserting 10k-100k records you should consider using either batch insert statements or bulk insert commands that are native to the database your using. The fastest way would be the native bulk insert commands but it would require you to not use JPA and to work directly with JDBC calls for the inserts you want to use bulk commands on.

If you don't want to play around with native bulk commands I recommend using Spring's JDBCTemplate which has templated batch insert commands. It is very fast and I use it to batch insert 10k-20k entities every 30 seconds on a high transaction system and I am very pleased with the performance.

Lastly, make sure your database tables are optimized with the correct indexes, keys and options. Since your database is the bottleneck this should be one of the first places you look to increase performance.


Multi-threading insert statements on database won't really make it perform any faster because in most databases the table requires a lock for an insert. So your threads will just be waiting for the one before it to finish up and unlock the table before the next can insert - which really doesn't make it any more multi-threaded than with a single thread. If you where to do it, it would most likely slow it down.

Are you saying concurrent inserts from different db connections on the same table require exclusive locks to complete? I tested this on Oracle, and I didn't find this to be the case. Do you actually have a test case to back up what you wrote here?

Anyway, bulk insert is of course a lot faster than one insert at a time.


Are you periodically flushing your session when doing this? if not, you can hit nasty slowdowns that have nothing to do with the database. generally, you want to "batch" the inserts by periodically calling flush() then clear() on your session (assuming you are using some variant of JPA).


This article has many tips to improve batch writing performance with JPA. I'll quote the two that should give you the best result for fast reference.

Optimization #6 - Sequence Pre-allocation

We have optimized the first part of the application, reading from the MySQL database. The second part is to optimize the writing to Oracle.

The biggest issue with the writing process is that the Id generation is using an allocation size of 1. This means that for every insert there will be an update and a select for the next sequence number. This is a major issue, as it is effectively doubling the amount of database access. By default JPA uses a pre-allocation size of 50 for TABLE and SEQUENCE Id generation, and 1 for IDENTITY Id generation (a very good reason to never use IDENTITY Id generation). But frequently applications are unnecessarily paranoid of holes in their Id values and set the pre-allocaiton value to 1. By changing the pre-allocation size from 1 to 500, we reduce about 1000 database accesses per page.

Optimization #8 - Batch Writing

Many databases provide an optimization that allows a batch of write operations to be performed as a single database access. There is both parametrized and dynamic batch writing. For parametrized batch writing a single parametrized SQL statement can be executed with a batch of parameter vales instead of a single set of parameter values. This is very optimal as the SQL only needs to be executed once, and all of the data can be passed optimally to the database.

Dynamic batch writing requires dynamic (non-parametrized) SQL that is batched into a single big statement and sent to the database all at once. The database then needs to process this huge string and execute each statement. This requires the database do a lot of work parsing the statement, so is no always optimal. It does reduce the database access, so if the database is remote or poorly connected with the application, this can result in an improvement.

In general parametrized batch writing is much more optimal, and on Oracle it provides a huge benefit, where as dynamic does not. JDBC defines the API for batch writing, but not all JDBC drivers support it, some support the API but then execute the statements one by one, so it is important to test that your database supports the optimization before using it. In EclipseLink batch writing is enabled using the persistence unit property "eclipselink.jdbc.batch-writing"="JDBC".

Another important aspect of using batch writing is that you must have the same SQL (DML actually) statement being executed in a grouped fashion in a single transaction. Some JPA providers do not order their DML, so you can end up ping-ponging between two statements such as the order insert and the order-line insert, making batch writing in-effective. Fortunately EclipseLink orders and groups its DML, so usage of batch writing reduces the database access from 500 order inserts and 5000 order-line inserts to 55 (default batch size is 100). We could increase the batch size using "eclipselink.jdbc.batch-writing.size", so increasing the batch size to 1000 reduces the database accesses to 6 per page.

0

精彩评论

暂无评论...
验证码 换一张
取 消