I have come across a number of situations where I want to plot more points than I really ought to be -- the main holdup is that when I share my plots with people or开发者_C百科 embed them in papers, they occupy too much space. It's very straightforward to randomly sample rows in a dataframe.
if I want a truly random sample for a point plot, it's easy to say:
ggplot(x,y,data=myDf[sample(1:nrow(myDf),1000),])
However, I was wondering if there were more effective (ideally canned) ways to specify the number of plot points such that your actual data is accurately reflected in the plot. So here is an example. Suppose I am plotting something like the CCDF of a heavy tailed distribution, e.g.
ccdf <- function(myList,density=FALSE)
{
# generates the CCDF of a list or vector
freqs = table(myList)
X = rev(as.numeric(names(freqs)))
Y =cumsum(rev(as.list(freqs)));
data.frame(x=X,count=Y)
}
qplot(x,count,data=ccdf(rlnorm(10000,3,2.4)),log='xy')
This will produce a plot where the x & y axis become increasingly dense. Here it would be ideal to have fewer samples plotted for large x or y values.
Does anybody have any tips or suggestions for dealing with similar issues?
Thanks, -e
I tend to use png files rather than vector based graphics such as pdf or eps for this situation. The files are much smaller, although you lose resolution.
If it's a more conventional scatterplot, then using semi-transparent colours also helps, as well as solving the over-plotting problem. For example,
x <- rnorm(10000); y <- rnorm(10000)
qplot(x, y, colour=I(alpha("blue",1/25)))
Beyond Rob's suggestions, one plot function I like as it does the 'thinning' for you is hexbin; an example is at the R Graph Gallery.
Here is one possible solution for downsampling plot with respect to the x-axis, if it is log transformed. It log transforms the x-axis, rounds that quantity, and picks the median x value in that bin:
downsampled_qplot <- function(x,y,data,rounding=0, ...) {
# assumes we are doing log=xy or log=x
group = factor(round(log(data$x),rounding))
d <- do.call(rbind, by(data, group,
function(X) X[order(X$x)[floor(length(X)/2)],]))
qplot(x,count,data=d, ...)
}
Using the definition of ccdf()
from above, we can then compare the original plot of the CCDF of the distribution with the downsampled version:
myccdf=ccdf(rlnorm(10000,3,2.4))
qplot(x,count,data=myccdf,log='xy',main='original')
downsampled_qplot(x,count,data=myccdf,log='xy',rounding=1,main='rounding = 1')
downsampled_qplot(x,count,data=myccdf,log='xy',rounding=0,main='rounding = 0')
In PDF format, the original plot takes up 640K, and the downsampled versions occupy 20K and 8K, respectively.
I'd either make image files (png or jpeg devices) as Rob already mentioned, or I'd make a 2D histogram. An alternative to the 2D histogram is a smoothed scatterplot, it makes a similar graphic but has a more smooth cutoff from dense to sparse regions of space.
If you've never seen addictedtor before, it's worth a look. It has some very nice graphics generated in R with images and sample code.
Here's the sample code from the addictedtor site:
2-d histogram:
require(gplots)
# example data, bivariate normal, no correlation
x <- rnorm(2000, sd=4)
y <- rnorm(2000, sd=1)
# separate scales for each axis, this looks circular
hist2d(x,y, nbins=50, col = c("white",heat.colors(16)))
rug(x,side=1)
rug(y,side=2)
box()
smoothscatter:
library("geneplotter") ## from BioConductor
require("RColorBrewer") ## from CRAN
x1 <- matrix(rnorm(1e4), ncol=2)
x2 <- matrix(rnorm(1e4, mean=3, sd=1.5), ncol=2)
x <- rbind(x1,x2)
layout(matrix(1:4, ncol=2, byrow=TRUE))
op <- par(mar=rep(2,4))
smoothScatter(x, nrpoints=0)
smoothScatter(x)
smoothScatter(x, nrpoints=Inf,
colramp=colorRampPalette(brewer.pal(9,"YlOrRd")),
bandwidth=40)
colors <- densCols(x)
plot(x, col=colors, pch=20)
par(op)
精彩评论