The general question is how to return additional information from methods, beside the actual result of the computation. But I want, that this information can silently be ignored.
Take for example the method dropWhile
on Iterator
. The returned result is the mutated iterator. But maybe sometimes I might be interested in the number of elements dropped.
In the case of 开发者_Python百科dropWhile
, this information could be generated externally by adding an index to the iterator and calculating the number of dropped steps afterwards. But in general this is not possible.
I simple solution is to return a tuple with the actual result and optional information. But then I need to handle the tuple whenever I call the method - even if I'm not interested in the optional information.
So the question is, whether there is some clever way of gathering such optional information?
Maybe through Option[X => Unit]
parameters with call-back functions that default to None
? Is there something more clever?
Just my two cents here…
You could declare this:
case class RichResult[+A, +B](val result: A, val info: B)
with an implicit conversion to A
:
implicit def unwrapRichResult[A, B](richResult: RichResult[A, B]): A = richResult.result
Then:
def someMethod: RichResult[Int, String] = /* ... */
val richRes = someMethod
val res: Int = someMethod
It's definitely not more clever, but you could just create a method that drops the additional information.
def removeCharWithCount(str: String, x: Char): (String, Int) =
(str.replace(x.toString, ""), str.count(x ==))
// alias that drops the additional return information
def removeChar(str: String, x: Char): String =
removeCharWithCount(str, x)._1
Here is my take (with some edits with a more realistic example):
package info {
trait Info[T] { var data: Option[T] }
object Info {
implicit def makeInfo[T]: Info[T] = new Info[T] {
var data: Option[T] = None
}
}
}
Then suppose your original method (and use case) is implemented like this:
object Test extends App {
def dropCounterIterator[A](iter: Iterator[A]) = new Iterator[A] {
def hasNext = iter.hasNext
def next() = iter.next()
override def dropWhile(p: (A) => Boolean): Iterator[A] = {
var count = 0
var current: Option[A] = None
while (hasNext && p({current = Some(next()); current.get})) { count += 1 }
current match {
case Some(a) => Iterator.single(a) ++ this
case None => Iterator.empty
}
}
}
val i = dropCounterIterator(Iterator.from(1))
val ii = i.dropWhile(_ < 10)
println(ii.next())
}
To provide and get access to the info, the code would be modified only slightly:
import info.Info // line added
object Test extends App {
def dropCounterIterator[A](iter: Iterator[A]) = new Iterator[A] {
def hasNext = iter.hasNext
def next() = iter.next()
// note overloaded variant because of extra parameter list, not overriden
def dropWhile(p: (A) => Boolean)(implicit info: Info[Int]): Iterator[A] = {
var count = 0
var current: Option[A] = None
while (hasNext && p({current = Some(next()); current.get})) { count += 1 }
info.data = Some(count) // line added here
current match {
case Some(a) => Iterator.single(a) ++ this
case None => Iterator.empty
}
}
}
val i = dropCounterIterator(Iterator.from(1))
val info = implicitly[Info[Int]] // line added here
val ii = i.dropWhile((x: Int) => x < 10)(info) // line modified
println(ii.next())
println(info.data.get) // line added here
}
Note that for some reason the type inference is affected and I had to annotate the type of the function passed to dropWhile
.
You want dropWhileM
with the State
monad threading a counter through the computation.
精彩评论