I have run up against the wall regarding the application of lapply() in a simulation study. The data are designed to help us understand how a standardization formula impacts the outcomes of a proposal ratings exercise.
There are three conditions for raters: no bias, uniform bias (bias increases across raters), and bidirectional bias (bias is balanced positive and negative across raters).
The true value for a proposal is assumed known.
We would like to produce a set replicate datasets within each bias condition so that the datasets would emulate a single proposal evaluation period (a panel). We would then like to replicate panels to simulate having many proposal evaluation periods.
Here is schematic of the data structure:
The data structure looks like this:
p = number of proposals
r = number of raters
n.panels = number of replicate panels
t.reps = list of several replicate panels
three bias conditions: n.bias - no bias
u.bias - uniform bias (raters higher than previous rater)
b.bias - bidirectional bias (balanced up and down bias)
-|
t 1 |..| --> 10*开发者_开发技巧(n.bias(p*r)) + 10*(u.bias(p*r)) + 10*(b.bias(p*r) {panel replication 1}
. 2 |..| --> 10*(n.bias(p*r)) + 10*(u.bias(p*r)) + 10*(b.bias(p*r) {panel replication 2}
r : : : : :
e : : : : :
p n.panels |..| --> 10*(n.bias(p*r)) + 10*(u.bias(p*r)) + 10*(b.bias(p*r) {n. panels replications}
s
_|
The following R code generates data correctly:
########## start of simulation parameters
set.seed(271828)
means <- matrix(c(rep(50,3), rep(60,3), rep(70,4) ), ncol = 1) # matrix of true proposal values
bias.u <- matrix(c(0,2,4,6,8), nrow=1) # unidirectional bias
bias.b <- matrix(c(0,3,-3, 5, -5), nrow=1) # bidirectional bias
ones.u <- matrix(rep(1,ncol(bias.u)), nrow = 1) # number of raters is the number of columns (r)
ones.b <- matrix(rep(1,ncol(bias.b)), nrow = 1)
ones.2 <- matrix(rep(1,nrow(means)), ncol = 1) # number of proposals is the number of rows (p)
true.ratings <- means%*%ones.u # gives matrix of true proposal value for each rater (p*r)
uni.bias <- ones.2%*%bias.u
bid.bias <- ones.2%*%bias.b # gives matrix of true rater bias for each proposal (p*r)
n.val <- nrow(means)*ncol(ones.u)
# true.ratings
# uni.bias
# bid.bias
library(MASS)
#####
##### generating replicate data...
#####
##########-------------------- analyzing mse of adjusted scores across replications
##########-------------------- developing random replicates of panel data
##########----- This means that there are (reps) replications in each of the bias conditions
##########----- to represent a plausible set of ratings in a particular collection
##########----- of panels. So for one proposal cycle (panel) , there are 3 * (reps) * nrow(means)
##########----- number of proposal ratings.
##########-----
##########----- There are (n.panels) replications of the total number of proposal ratings placed in a list
##########----- (t.reps).
n.panels <- 2 # put in the number of replicate panels that should be produced
reps <- 10 # put in the number of times each bias condition should be included in a panel
t.reps <- list()
n.bias <- list()
u.bias <- list()
b.bias <- list()
for (i in 1:n.panels)
{
{
for(j in 1:reps)
n.bias[[j]] <- true.ratings + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
for(j in 1:reps)
u.bias[[j]] <- true.ratings + uni.bias + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
for(j in 1:reps)
b.bias[[j]] <- true.ratings + bid.bias + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
}
t.reps[[i]] <- list(n.bias, u.bias, b.bias)
}
# t.reps
Each element in the list (t.reps) is a random replication of a panel of reviewers for an entire set of proposals.
I would like to apply the following function to "adjust" the scores within a panel using characteristics of the ENTIRE set of proposal scores (across all raters and proposals) to adjust values within a rater. The idea is to correct for any bias one way or another (e.g. being overly harsh or overly easy when rating proposals).
The adjustment should be applied for each of the (reps) datasets.
So, for one panel, there would be 30 replicate datasets (10 for each bias condition) and each replicate dataset would have 10 proposals rated by 5 raters, resulting in 300 proposals total.
So the idea is to have random replications to understand how the adjusted scores compare to the unadjusted scores.
I had tried to use the lapply() function across the lists within the (t.reps) list, and it did not work.
adj.scores <- function(x, tot.dat)
{
t.sd <- sd(array(tot.dat))
t.mn <- mean(array(tot.dat))
ones.t.mn <- diag(1,ncol(x))
p <- nrow(x)
r <- ncol(x)
ones.total <- matrix(1,p,r)
r.sd <- diag(apply(x,2, sd))
r.mn <- diag(apply(x,2, mean))
den.r.sd <- ginv(r.sd)
b.shift <- x%*%den.r.sd
a <- t.mn*ones.t.mn - den.r.sd%*%r.mn
a.shift <- ones.total%*%a
l.x <- b.shift + a.shift
return(l.x)
}
########## I would like to do something like this...
########## apply the function to each element in the list t.reps
dat.1 <- matrix(unlist(t.reps[[1]]), ncol=5)
adj.rep.1 <- lapply(t.reps[[1]], adj.scores, tot.dat = dat.1)
I am open to other methods / workarounds that will allow for rater adjustment within a set of proposal ratings using statistics from the entire set of ratings. There may be some R functionality that I just don't know about or haven't come across.
Also, if anyone can recommend a book for programming data structures like this (in R, Perl, or Python), it would be most appreciated. The texts that I have found thus far do not address these issues in detail.
Many, many thanks in advance.
-Jon
I can't say I fully understand the whole problem (I'm, not a stats guy!), but the reason your lapply line fails is that adj.scores
get passed a list in x
when it expects a matrix.
Since you have lists of lists (of lists!), rapply
seems like a better fit. The following seems to produce something reasonable:
adj.rep.1 <- rapply(t.reps[[1]], adj.scores, how='replace', tot.dat = dat.1)
# comparing the structures
str(t.reps[[1]])
str(adj.rep.1)
Hope this helps!
I am very late in posting the solution that worked for me. I'm sure that there are improvements that could be made, so please feel free to comment!
The objective of this exercise was to understand to what degree a linear transformation of proposal ratings would have on the selection of proposals. The idea was to try and disentangle "proposal quality" from "rater bias" and "panel bias".
One way to do this is essentially center all ratings on the panel mean, and then do a mean / sd transformation for the panel-centered ratings using the overall mean and sd for all ratings. This procedure is in the function adj.scores
.
This is non-trivial, since proposals are evaluated by people, and there may be a large amount of financial incentives riding on a successful proposal evaluation (grants, contracts, etc.).
Any thoughts on improvements or competing strategies are welcome.
####################
########## proposal ratings project
########## 17 June 2011
########## original code by: jjb with help from es
##########------ functions to be read in and called when desired
########## applying this function to a single matrix will give detailed output
########## calculating generalizability theory components
########## not a very robust formulation, but a good place to start
########## for future, put panel facet on this design
g.pxr.long = function(x)
{
m.raters <<- colMeans(x)
n.raters <<- length(m.raters)
m.props <<- rowMeans(x)
n.props <<- length(m.props)
m.total <<- mean(x)
n.total <<- nrow(x)*ncol(x)
m.raters.2 <<- m.raters^2
m.props.2 <<- m.props^2
sum.m.raters.2 <<- sum(m.raters.2)
sum.m.props.2 <<- sum(m.props.2)
ss.props <<- n.raters*(sum.m.props.2) - n.total*(m.total^2)
ss.raters <<- n.props*(sum.m.raters.2) - n.total*(m.total^2)
ss.pr <<- sum(x^2) - n.raters*(sum.m.props.2) - n.props*(sum.m.raters.2) + n.total*(m.total^2)
df.props <- n.props - 1
df.raters <- n.raters - 1
df.pr <- df.props*df.raters
ms.props <- ss.props / df.props
ms.raters <- ss.raters / df.raters
ms.pr <- ss.pr / df.pr
var.p <- (ms.props - ms.pr) / n.raters
var.r <- (ms.raters - ms.pr) / n.props
var.pr <- ms.pr
out.1 <- as.data.frame( matrix(c( df.props, df.raters, df.pr,
ss.props, ss.raters, ss.pr,
ms.props, ms.raters, ms.pr,
var.p, var.r, var.pr), ncol = 4))
out.2 <- as.data.frame(matrix(c("p", "r", "pr" ), ncol = 1))
g.out.1 <- as.data.frame(cbind(out.2, out.1))
colnames(g.out.1) <- c(" source", " df ", " ss ", " ms ", " variance")
var.abs <- (var.r / n.raters) + (var.pr / n.raters)
var.rel <- (var.pr / n.raters)
var.xbar <- (var.p / n.props) + (var.r / n.raters) + (var.pr / (n.raters*n.props) )
gen.coef <- var.p / (var.p + var.rel)
dep.coef <- var.p / (var.p + var.abs)
out.3 <- as.data.frame(matrix(c(var.rel, var.abs, var.xbar, gen.coef, dep.coef), ncol=1))
out.3 <- round(out.3, digits = 4)
out.4 <- as.data.frame(matrix(c("relative error variance", "absolute error variance", "xbar error variance", "E(rho^2)", "Phi"), ncol=1))
g.out.2 <- as.data.frame(cbind(out.4,out.3))
colnames(g.out.2) <- c(" estimate ", " value")
outs <- list(g.out.1, g.out.2)
names(outs) <- c("generalizability theory: G-study components", "G-study Indices")
return(outs)
}
##########----- calculating confidence intervals using Chebychev, Cramer, and Normal
##########----- use this to find alpha for desired k
factor.choose = function(k)
{
alpha <- 1 / k^2
return(alpha)
}
conf.intervals = function(dat, alpha)
{
k <- sqrt( 1 / alpha ) # specifying what the k factor is...
x.bar <- mean(dat)
x.sd <- sd(dat)
n.obs <- length(dat)
sem <- x.sd / sqrt(n.obs)
ub.cheb <- x.bar + k*sem
lb.cheb <- x.bar - k*sem
ub.crem <- x.bar + (4/9)*k*sem
lb.crem <- x.bar - (4/9)*k*sem
ub.norm <- x.bar + qnorm(1-alpha/2)*sem
lb.norm <- x.bar - qnorm(1-alpha/2)*sem
out.lb <- matrix(c(lb.cheb, lb.crem, lb.norm), ncol=1)
out.ub <- matrix(c(ub.cheb, ub.crem, ub.norm), ncol=1)
dat <- as.data.frame(dat)
mean.raters <- as.matrix(rowMeans(dat))
dat$z.values <- matrix((mean.raters - x.bar) / x.sd)
select.cheb <- dat[ which(abs(dat$z.values) >= k ) , ]
select.crem <- dat[ which(abs(dat$z.values) >= (4/9)*k ) , ]
select.norm <- dat[ which(abs(dat$z.values) >= qnorm(1-alpha/2)) , ]
count.cheb <- nrow(select.cheb)
count.crem <- nrow(select.crem)
count.norm <- nrow(select.norm)
out.dat <- list()
out.dat <- list(select.cheb, select.crem, select.norm)
names(out.dat) <- c("Selected cases: Chebychev", "Selected cases: Cramer's", "Selected cases: Normal")
out.sum <- matrix(c(x.bar, x.sd, n.obs), ncol=3)
colnames(out.sum) <- c("mean", "sd", "n")
out.crit <- matrix(c(alpha, k, (4/9)*k, qnorm(1-alpha/2)) ,ncol=4 )
colnames(out.crit) <- c("alpha", "k", "(4/9)*k", "z" )
out.count <- matrix(c(count.cheb, count.crem, count.norm) ,ncol=3 )
colnames(out.count) <- c("Chebychev", "Cramer" , "Normal")
rownames(out.count) <- c("count")
outs <- list(out.sum, out.crit, out.count, out.dat)
names(outs) <- c("Summary of data", "Critical values", "Count of Selected Cases", "Selected Cases")
return(outs)
}
rm(list = ls())
set.seed(271828)
means <- matrix(c( rep(50,19), rep(70,1) ), ncol = 1) # matrix of true proposal values
bias.u <- matrix(c(0,2,4), nrow=1) # unidirectional bias
bias.b <- matrix(c(0,5, -5), nrow=1) # bidirectional bias
ones.u <- matrix(rep(1,ncol(bias.u)), nrow = 1) # number of raters is the number of columns (r)
ones.b <- matrix(rep(1,ncol(bias.b)), nrow = 1)
ones.2 <- matrix(rep(1,nrow(means)), ncol = 1) # number of proposals is the number of rows (p)
true.ratings <- means%*%ones.u # gives matrix of true proposal value for each rater (p*r)
uni.bias <- ones.2%*%bias.u
bid.bias <- ones.2%*%bias.b # gives matrix of true rater bias for each proposal (p*r)
pan.bias.pos <- matrix(20,nrow=nrow(true.ratings), ncol=ncol(true.ratings)) # gives a matrix of bias for every member in a panel (p*r)
n.val <- nrow(true.ratings)*ncol(true.ratings)
# true.ratings
# uni.bias
# bid.bias
# pan.bias.pos
library(MASS)
#####
##### generating replicate data...
#####
n.panels <- 10 # put in the number of replicate panels that should be produced
reps <- 2 # put in the number of times each bias condition should be included in a panel
t.reps <- list()
n.bias <- list()
u.bias <- list()
b.bias <- list()
pan.bias <- list()
n.bias.out <- list()
u.bias.out <- list()
b.bias.out <- list()
pan.bias.out <- list()
for (i in 1:n.panels)
{
{
for(j in 1:reps)
n.bias[[j]] <- true.ratings + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
for(j in 1:reps)
u.bias[[j]] <- true.ratings + uni.bias + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
for(j in 1:reps)
b.bias[[j]] <- true.ratings + bid.bias + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
}
pan.bias[[i]] <- true.ratings + pan.bias.pos + matrix(round(rnorm(n.val,4,2), digits=0), nrow = nrow(means))
n.bias.out[[i]] <- n.bias
u.bias.out[[i]] <- u.bias
b.bias.out[[i]] <- b.bias
t.reps[[i]] <- c(n.bias, u.bias, b.bias, pan.bias[i])
}
# t.reps
# rm(list = ls())
##########----- this is the standardization formula to be applied to proposal ratings **WITHIN** a panel
adj.scores <- function(x, tot.dat)
{
t.sd <- sd(array(tot.dat))
t.mn <- mean(array(tot.dat))
ones.t.mn <- diag(1,ncol(x))
p <- nrow(x)
r <- ncol(x)
ones.total <- matrix(1,p,r)
r.sd <- diag(apply(x,2, sd))
r.mn <- diag(apply(x,2, mean))
den.r.sd <- ginv(r.sd)
b.shift <- x%*%den.r.sd
a <- t.mn*ones.t.mn - den.r.sd%*%r.mn
a.shift <- ones.total%*%a
l.x <- b.shift + a.shift
return(l.x)
}
##########----- applying standardization formula and getting
##########----- proposal means for adjusted and unadjusted ratings
adj.rep <- list()
m.adj <- list()
m.reg <- list()
for (i in 1:n.panels)
{
panel.data <- array(unlist(t.reps[[i]]))
adj.rep[[i]] <- lapply(t.reps[[i]], adj.scores, tot.dat = panel.data)
m.adj[[i]] <- lapply(adj.rep[[i]], rowMeans)
m.reg[[i]] <- lapply(t.reps[[i]], rowMeans)
}
##########-----
##########----- This function extracts the replicate proposal means for each set of reviews
##########----- across panels. So, if there are 8 sets of reviewers that are simulated 10 times,
##########----- this extracts the first set of means across the 10 replications and puts them together,
##########----- and then extracts the second set of means across replications and puts them together, etc..
##########----- The result will be 8 matrices made up of 10 columns with rows .
##########-----
##########----- first for unadjusted means
means.reg <- matrix(unlist(m.reg), nrow=nrow(means))
sets <- length(m.reg[[1]])
counter <- n.panels*length(m.reg[[1]])
m.reg.panels.set <- list()
for (j in 1:sets)
{
m.reg.panels.set[[j]] <- means.reg[ , c(seq( j, counter, sets))]
}
##########----- now for adjusted means
means.adj <- matrix(unlist(m.adj), nrow=nrow(means))
sets <- length(m.adj[[1]])
counter <- n.panels*length(m.adj[[1]])
m.adj.panels.set <- list()
for (j in 1:sets)
{
m.adj.panels.set[[j]] <- means.adj[ , c(seq( j, counter, sets))]
}
########## calculating msd as bias^2 and error^2
msd.calc <- function(x)
{
true.means <- means
calc.means <- as.matrix(rowMeans(x))
t.means.mat <- matrix(rep(true.means, n.panels), ncol=ncol(x))
c.means.mat <- matrix(rep(calc.means, n.panels), ncol=ncol(x))
msd <- matrix( rowSums( (x - t.means.mat )^2) / ncol(c.means.mat) )
bias.2 <- (calc.means - true.means)^2
e.var <- matrix( rowSums( (x - c.means.mat )^2) / ncol(c.means.mat ) )
msd <- matrix(c(msd, bias.2, e.var), ncol = 3)
colnames(msd) <- c("msd", "bias^2", "e.var")
return(msd)
}
########## checking work...
# msd.calc <- bias.2 + e.var
# all.equal(msd, msd.calc)
##########----- applying function to each set across panels
msd.reg.panels <- lapply(m.reg.panels.set, msd.calc)
msd.adj.panels <- lapply(m.adj.panels.set, msd.calc)
msd.reg.panels
msd.adj.panels
########## for the unadjusted scores, the msd is very large (as is expected)
########## for the adjusted scores, the msd is in line with the other panels
##########----- trying to evaluate impact of adjusting scores on proposal awards
reg.panel.1 <- matrix(unlist(m.reg[[1]]), nrow=nrow(means))
adj.panel.1 <- matrix(unlist(m.adj[[1]]), nrow=nrow(means))
reg <- matrix(array(reg.panel.1), ncol=1)
adj <- matrix(array(adj.panel.1), ncol=1)
panels.1 <- cbind(reg,adj)
colnames(panels.1) <- c("unadjusted", "adjusted")
cor(panels.1, method="spearman")
plot(panels.1)
######## identify(panels.1)
plot(panels.1, xlim = c(25,95), ylim = c(25,95) )
abline(0,1, col="red")
########## the adjustment greatly reduces variances of ratings
########## compare the projection of the panel means onto the respective margins
##########----- examining the selection of the top 10% of the proposals
pro.names <- matrix(seq(1,nrow(reg),1))
df.reg <- as.data.frame(cbind(pro.names, reg))
colnames(df.reg) <- c("pro", "rating")
df.reg$q.pro <- ecdf(df.reg$rating)(df.reg$rating)
df.adj <- as.data.frame(cbind(pro.names, adj))
colnames(df.adj) <- c("pro", "rating")
df.adj$q.pro <- ecdf(df.adj$rating)(df.adj$rating)
awards.reg <- df.reg[ which(df.reg$q.pro >= .90) , ]
awards.adj <- df.adj[ which(df.adj$q.pro >= .90) , ]
awards.reg[order(-awards.reg$q.pro) , ]
awards.adj[order(-awards.adj$q.pro) , ]
awards.reg[order(-awards.reg$pro) , ]
awards.adj[order(-awards.adj$pro) , ]
##### using unadjusted scores, the top 10% of proposals come mostly from one (biased) panel, and the rest are made up of the
##### highest scoring proposal (from the biased rater) from the remaining panels.
##### using the adjusted scores, the top 10% of proposals are made up of the highest scoring proposal (the biased rater) from the
##### several panels, and a few proposals from other panels. Doesn't seem to be a systematic explanation as to why...
#########----- treating rating data in an ANOVA model
ratings <- do.call("rbind", t.reps[[1]] )
panels <- factor(gl(7,20))
fit <- manova(ratings ~ panels)
summary(fit, test="Wilks")
adj.ratings <- do.call("rbind", adj.rep[[1]] )
adj.fit <- manova(adj.ratings ~ panels)
summary(adj.fit, test="Wilks")
##########----- thinking... extra ideas for later
##########----- calculating Mahalanobis distance to identify biased panels
mah.dist = function(dat)
{md.dat <- as.matrix(mahalanobis(dat, center = colMeans(dat) , cov = cov(dat) ))
md.pv <- as.matrix(pchisq(md.dat, df = ncol(dat), lower.tail = FALSE))
out <- cbind(md.dat, md.pv)
out.2 <- as.data.frame(out)
colnames(out.2) <- c("MD", "pMD")
return(out.2)
}
mah.dist(ratings)
mah.dist(adj.ratings)
精彩评论