开发者

Buffering on top of VFS

开发者 https://www.devze.com 2023-03-09 04:44 出处:网络
the probl开发者_如何学Goem I try to deal with it is the saving of big number (millions) of small files (up to 50KB), which are sent via network. The saving is done sequential: server receives a file o

the probl开发者_如何学Goem I try to deal with it is the saving of big number (millions) of small files (up to 50KB), which are sent via network. The saving is done sequential: server receives a file or a dir (via network), it saves it on disk; the next one arrives, it's saved etc. Apparently, the performance is not acceptable, if multiple server processes coexist (let's say I have 5 processes which all read from network and write at the same time), because the I/O scheduler doesn't manage to merge efficiently the I/O writes.

A suggested solution is to implement some sort of buffering: each server process should have a 50MB cache, in which it should write the current file, do a chdir etc; when the buffer is full, it should be synced to disk, therefore obtaining an I/O burst.

My questions to you: 1) I know that already exists a buffer mechanism (disk buffer); do you think that the above scenario is going to add some improvement? (the design is much more complicated and it's not easy to implement a simple test case)

2) do you have any suggestions, where to look if I would implement this?

Many thanks.


You're going to need to do better than

"apparently the performance is not acceptable".

Specifically

  • How are you measuring it? Do you have an exact, reproducible figure
  • What is your target?

In order to do optimisation, you need two things- a method of measuring it (a metric) and a target (so you know when to stop, or how useful or useless a particular technique is).

Without either, you're sunk, I'm afraid.


How important are those writes? I have three suggestions (which can be combined), but one of them is a lot of work, and one of them is less safe...

Journaling

I'm guessing you're seeing some poor performance due in part to the journaling common to most modern Linux filesystems. The journaling causes barriers to be inserted into the IO queue when file metadata is written. You can try turning down the safety (and maybe turning up the speed) with mount(8) options barrier=0 and data=writeback.

But if there is a crash, the journal might not be able to prevent a lengthy fsck(8). And there's a chance the fsck(8) will wind up throwing away your data when fixing the problem. On the one hand, it's not a step to take lightly, on the other hand, back in the old days, we ran our ext2 filesystems in async mode without a journal both ways in the snow and we liked it.

IO Scheduler elevator

Another possibility is to swap the IO elevator; see Documentation/block/switching-sched.txt in the Linux kernel source tree. The short version is that deadline, noop, as, and cfq are available. cfq is the kernel default, and probably what your system is using. You can check:

$ cat /sys/block/sda/queue/scheduler
noop deadline [cfq] 

The most important parts from the file:

As of the Linux 2.6.10 kernel, it is now possible to change the
IO scheduler for a given block device on the fly (thus making it possible,
for instance, to set the CFQ scheduler for the system default, but
set a specific device to use the deadline or noop schedulers - which
can improve that device's throughput).

To set a specific scheduler, simply do this:

echo SCHEDNAME > /sys/block/DEV/queue/scheduler

where SCHEDNAME is the name of a defined IO scheduler, and DEV is the
device name (hda, hdb, sga, or whatever you happen to have).

The list of defined schedulers can be found by simply doing
a "cat /sys/block/DEV/queue/scheduler" - the list of valid names
will be displayed, with the currently selected scheduler in brackets:

# cat /sys/block/hda/queue/scheduler
noop deadline [cfq]
# echo deadline > /sys/block/hda/queue/scheduler
# cat /sys/block/hda/queue/scheduler
noop [deadline] cfq

Changing the scheduler might be worthwhile, but depending upon the barriers inserted into the queue by the journaling requirements, there might not be much reordering possible. Still, it is less likely to lose your data, so it might be the first step.

Application changes

Another possibility is to drastically change your application to bundle files itself, and write fewer, larger, files to disk. I know it sounds strange, but (a) the iD development team packaged their maps, textures, objects, etc., into giant zip files that they would read into the program with a few system calls, unpack, and run with, because they found the performance much better than reading a few hundred or few thousand smaller files. Load times between levels was drastically shorter. (b) The Gnome desktop team and KDE desktop teams took different approaches to loading their icons and resource files: the KDE team packages their many small files into larger packages of some sort, and the Gnome team did not. The Gnome team had longer startup delays and were hoping the kernel could make some efforts to improve their startup time. The kernel team kept suggesting the fewer, larger, files approach.


Creating/renaming a file, syncing it, having lots of files in a directory and having lots of files (with tail waste) are some of the slow operations in your scenario. However to avoid them it would only help to write lesser files (for example writing out archives, concatenated file or similiar). I would actually try a (limited) parallel async or sync approach. The IO scheduler and caches are typically quite good.

0

精彩评论

暂无评论...
验证码 换一张
取 消

关注公众号