开发者

Counting the number of elements with the values of x in a vector

开发者 https://www.devze.com 2022-12-14 12:15 出处:网络
I have a vector of numbers: numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435, 453,435,324,34,456,56,567,65,34,435)

I have a vector of numbers:

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
         453,435,324,34,456,56,567,65,34,435)

How can I have开发者_开发问答 R count the number of times a value x appears in the vector?


You can just use table():

> a <- table(numbers)
> a
numbers
  4   5  23  34  43  54  56  65  67 324 435 453 456 567 657 
  2   1   2   2   1   1   2   1   2   1   3   1   1   1   1 

Then you can subset it:

> a[names(a)==435]
435 
  3

Or convert it into a data.frame if you're more comfortable working with that:

> as.data.frame(table(numbers))
   numbers Freq
1        4    2
2        5    1
3       23    2
4       34    2
...


The most direct way is sum(numbers == x).

numbers == x creates a logical vector which is TRUE at every location that x occurs, and when suming, the logical vector is coerced to numeric which converts TRUE to 1 and FALSE to 0.

However, note that for floating point numbers it's better to use something like: sum(abs(numbers - x) < 1e-6).


I would probably do something like this

length(which(numbers==x))

But really, a better way is

table(numbers)


There is also count(numbers) from plyr package. Much more convenient than table in my opinion.


My preferred solution uses rle, which will return a value (the label, x in your example) and a length, which represents how many times that value appeared in sequence.

By combining rle with sort, you have an extremely fast way to count the number of times any value appeared. This can be helpful with more complex problems.

Example:

> numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,324,34,456,56,567,65,34,435)
> a <- rle(sort(numbers))
> a
  Run Length Encoding
    lengths: int [1:15] 2 1 2 2 1 1 2 1 2 1 ...
    values : num [1:15] 4 5 23 34 43 54 56 65 67 324 ...

If the value you want doesn't show up, or you need to store that value for later, make a a data.frame.

> b <- data.frame(number=a$values, n=a$lengths)
> b
    values n
 1       4 2
 2       5 1
 3      23 2
 4      34 2
 5      43 1
 6      54 1
 7      56 2
 8      65 1
 9      67 2
 10    324 1
 11    435 3
 12    453 1
 13    456 1
 14    567 1
 15    657 1

I find it is rare that I want to know the frequency of one value and not all of the values, and rle seems to be the quickest way to get count and store them all.


There is a standard function in R for that

tabulate(numbers)


numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435 453,435,324,34,456,56,567,65,34,435)

> length(grep(435, numbers))
[1] 3


> length(which(435 == numbers))
[1] 3


> require(plyr)
> df = count(numbers)
> df[df$x == 435, ] 
     x freq
11 435    3


> sum(435 == numbers)
[1] 3


> sum(grepl(435, numbers))
[1] 3


> sum(435 == numbers)
[1] 3


> tabulate(numbers)[435]
[1] 3


> table(numbers)['435']
435 
  3 


> length(subset(numbers, numbers=='435')) 
[1] 3


If you want to count the number of appearances subsequently, you can make use of the sapply function:

index<-sapply(1:length(numbers),function(x)sum(numbers[1:x]==numbers[x]))
cbind(numbers, index)

Output:

        numbers index
 [1,]       4     1
 [2,]      23     1
 [3,]       4     2
 [4,]      23     2
 [5,]       5     1
 [6,]      43     1
 [7,]      54     1
 [8,]      56     1
 [9,]     657     1
[10,]      67     1
[11,]      67     2
[12,]     435     1
[13,]     453     1
[14,]     435     2
[15,]     324     1
[16,]      34     1
[17,]     456     1
[18,]      56     2
[19,]     567     1
[20,]      65     1
[21,]      34     2
[22,]     435     3


here's one fast and dirty way:

x <- 23
length(subset(numbers, numbers==x))


You can change the number to whatever you wish in following line

length(which(numbers == 4))


One more way i find convenient is:

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,324,34,456,56,567,65,34,435)
(s<-summary (as.factor(numbers)))

This converts the dataset to factor, and then summary() gives us the control totals (counts of the unique values).

Output is:

4   5  23  34  43  54  56  65  67 324 435 453 456 567 657 
2   1   2   2   1   1   2   1   2   1   3   1   1   1   1 

This can be stored as dataframe if preferred.

as.data.frame(cbind(Number = names(s),Freq = s), stringsAsFactors=F, row.names = 1:length(s))

here row.names has been used to rename row names. without using row.names, column names in s are used as row names in new dataframe

Output is:

     Number Freq
1       4    2
2       5    1
3      23    2
4      34    2
5      43    1
6      54    1
7      56    2
8      65    1
9      67    2
10    324    1
11    435    3
12    453    1
13    456    1
14    567    1
15    657    1


Using table but without comparing with names:

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435)
x <- 67
numbertable <- table(numbers)
numbertable[as.character(x)]
#67 
# 2 

table is useful when you are using the counts of different elements several times. If you need only one count, use sum(numbers == x)


One option could be to use vec_count() function from the vctrs library:

vec_count(numbers)

   key count
1  435     3
2   67     2
3    4     2
4   34     2
5   56     2
6   23     2
7  456     1
8   43     1
9  453     1
10   5     1
11 657     1
12 324     1
13  54     1
14 567     1
15  65     1

The default ordering puts the most frequent values at top. If looking for sorting according keys (a table()-like output):

vec_count(numbers, sort = "key")

   key count
1    4     2
2    5     1
3   23     2
4   34     2
5   43     1
6   54     1
7   56     2
8   65     1
9   67     2
10 324     1
11 435     3
12 453     1
13 456     1
14 567     1
15 657     1


There are different ways of counting a specific elements

library(plyr)
numbers =c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,7,65,34,435)

print(length(which(numbers==435)))

#Sum counts number of TRUE's in a vector 
print(sum(numbers==435))
print(sum(c(TRUE, FALSE, TRUE)))

#count is present in plyr library 
#o/p of count is a DataFrame, freq is 1 of the columns of data frame
print(count(numbers[numbers==435]))
print(count(numbers[numbers==435])[['freq']])


This is a very fast solution for one-dimensional atomic vectors. It relies on match(), so it is compatible with NA:

x <- c("a", NA, "a", "c", "a", "b", NA, "c")

fn <- function(x) {
  u <- unique.default(x)
  out <- list(x = u, freq = .Internal(tabulate(match(x, u), length(u))))
  class(out) <- "data.frame"
  attr(out, "row.names") <- seq_along(u)
  out
}

fn(x)

#>      x freq
#> 1    a    3
#> 2 <NA>    2
#> 3    c    2
#> 4    b    1

You could also tweak the algorithm so that it doesn't run unique().

fn2 <- function(x) {
  y <- match(x, x)
  out <- list(x = x, freq = .Internal(tabulate(y, length(x)))[y])
  class(out) <- "data.frame"
  attr(out, "row.names") <- seq_along(x)
  out
}

fn2(x)

#>      x freq
#> 1    a    3
#> 2 <NA>    2
#> 3    a    3
#> 4    c    2
#> 5    a    3
#> 6    b    1
#> 7 <NA>    2
#> 8    c    2

In cases where that output is desirable, you probably don't even need it to re-return the original vector, and the second column is probably all you need. You can get that in one line with the pipe:

match(x, x) %>% `[`(tabulate(.), .)

#> [1] 3 2 3 2 3 1 2 2


Base r solution in 2021

aggregate(numbers, list(num=numbers), length)

       num x
1        4 2
2        5 1
3       23 2
4       34 2
5       43 1
6       54 1
7       56 2
8       65 1
9       67 2
10     324 1
11     435 3
12     453 1
13     456 1
14     567 1
15     657 1

tapply(numbers, numbers, length)
  4   5  23  34  43  54  56  65  67 324 435 453 456 567 657 
  2   1   2   2   1   1   2   1   2   1   3   1   1   1   1 

by(numbers, list(num=numbers), length)
num: 4
[1] 2
-------------------------------------- 
num: 5
[1] 1
-------------------------------------- 
num: 23
[1] 2
-------------------------------------- 
num: 34
[1] 2
-------------------------------------- 
num: 43
[1] 1
-------------------------------------- 
num: 54
[1] 1
-------------------------------------- 
num: 56
[1] 2
-------------------------------------- 
num: 65
[1] 1
-------------------------------------- 
num: 67
[1] 2
-------------------------------------- 
num: 324
[1] 1
-------------------------------------- 
num: 435
[1] 3
-------------------------------------- 
num: 453
[1] 1
-------------------------------------- 
num: 456
[1] 1
-------------------------------------- 
num: 567
[1] 1
-------------------------------------- 
num: 657
[1] 1


A method that is relatively fast on long vectors and gives a convenient output is to use lengths(split(numbers, numbers)) (note the S at the end of lengths):

# Make some integer vectors of different sizes
set.seed(123)
x <- sample.int(1e3, 1e4, replace = TRUE)
xl <- sample.int(1e3, 1e6, replace = TRUE)
xxl <-sample.int(1e3, 1e7, replace = TRUE)

# Number of times each value appears in x:
a <- lengths(split(x,x))

# Number of times the value 64 appears:
a["64"]
#~ 64
#~ 15

# Occurences of the first 10 values
a[1:10]
#~ 1  2  3  4  5  6  7  8  9 10 
#~ 13 12  6 14 12  5 13 14 11 14 

The output is simply a named vector.
The speed appears comparable to rle proposed by JBecker and even a bit faster on very long vectors. Here is a microbenchmark in R 3.6.2 with some of the functions proposed:

library(microbenchmark)

f1 <- function(vec) lengths(split(vec,vec))
f2 <- function(vec) table(vec)
f3 <- function(vec) rle(sort(vec))
f4 <- function(vec) plyr::count(vec)

microbenchmark(split = f1(x),
               table = f2(x),
               rle = f3(x),
               plyr = f4(x))
#~ Unit: microseconds
#~   expr      min        lq      mean    median        uq      max neval  cld
#~  split  402.024  423.2445  492.3400  446.7695  484.3560 2970.107   100  b  
#~  table 1234.888 1290.0150 1378.8902 1333.2445 1382.2005 3203.332   100    d
#~    rle  227.685  238.3845  264.2269  245.7935  279.5435  378.514   100 a   
#~   plyr  758.866  793.0020  866.9325  843.2290  894.5620 2346.407   100   c 

microbenchmark(split = f1(xl),
               table = f2(xl),
               rle = f3(xl),
               plyr = f4(xl))
#~ Unit: milliseconds
#~   expr       min        lq      mean    median        uq       max neval cld
#~  split  21.96075  22.42355  26.39247  23.24847  24.60674  82.88853   100 ab 
#~  table 100.30543 104.05397 111.62963 105.54308 110.28732 168.27695   100   c
#~    rle  19.07365  20.64686  23.71367  21.30467  23.22815  78.67523   100 a  
#~   plyr  24.33968  25.21049  29.71205  26.50363  27.75960  92.02273   100  b 

microbenchmark(split = f1(xxl),
               table = f2(xxl),
               rle = f3(xxl),
               plyr = f4(xxl))
#~ Unit: milliseconds
#~   expr       min        lq      mean    median        uq       max neval  cld
#~  split  296.4496  310.9702  342.6766  332.5098  374.6485  421.1348   100 a   
#~  table 1151.4551 1239.9688 1283.8998 1288.0994 1323.1833 1385.3040   100    d
#~    rle  399.9442  430.8396  464.2605  471.4376  483.2439  555.9278   100   c 
#~   plyr  350.0607  373.1603  414.3596  425.1436  437.8395  506.0169   100  b  

Importantly, the only function that also counts the number of missing values NA is plyr::count. These can also be obtained separately using sum(is.na(vec))


Here is a way you could do it with dplyr:

library(tidyverse)

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
             453,435,324,34,456,56,567,65,34,435)
ord <- seq(1:(length(numbers)))

df <- data.frame(ord,numbers)

df <- df %>%
  count(numbers)

numbers     n
     <dbl> <int>
 1       4     2
 2       5     1
 3      23     2
 4      34     2
 5      43     1
 6      54     1
 7      56     2
 8      65     1
 9      67     2
10     324     1
11     435     3
12     453     1
13     456     1
14     567     1
15     657     1


This can be done with outer to get a metrix of equalities followed by rowSums, with an obvious meaning.
In order to have the counts and numbers in the same dataset, a data.frame is first created. This step is not needed if you want separate input and output.

df <- data.frame(No = numbers)
df$count <- rowSums(outer(df$No, df$No, FUN = `==`))


You can make a function to give you results.

# your list
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
         453,435,324,34,456,56,567,65,34,435)

function1<-function(x){
    if(x==value){return(1)}else{ return(0) }
}

# set your value here
value<-4

# make a vector which return 1 if it equal to your value, 0 else
vector<-sapply(numbers,function(x) function1(x))
sum(vector)

result: 2

0

精彩评论

暂无评论...
验证码 换一张
取 消