Uh, yeah, I'd really need a quick input from someone without creator's eyes. Something's wrong in here, according to my scalacheck
tests... but I don't really know enough about it to know where it's wrong.
case class Matrix(_1: (Float, Float, Float, Float), _2: (Float, Float, Float, Float),
_3: (Float, Float, Float, Float), _4: (Float, Float, Float, Float)) extends Immutable {
def invert = {
val _11 = _2._2 * _3._3 * _4._4 - _2._2 * _3._4 * _4._3 - _3._2 * _2._3 * _4._4
+_3._2 * _2._4 * _4._3 + _4._2 * _2._3 * _3._4 - _4._2 * _2._4 * _3._3
val _21 = -_2._1 * _3._3 * _4._4 + _2._1 * _3._4 * _4._3 + _3._1 * _2._3 * _4._4
-_3._1 * _2._4 * _4._3 - _4._1 * _2._3 * _3._4 + _4._1 * _2._4 * _3._3
val _31 = _2._1 * _3._2 * _4._4 - _2._1 * _3._4 * _4._2 - _3._1 * _2._2 * _4._4
+_3._1 * _2._4 * _4._2 + _4._1 * _2._2 * _3._4 - _4._1 * _2._4 * _3._2
val _41 = -_2._1 * _3._2 * _4._3 + _2._1 * _3._3 * _4._2 + _3._1 * _2._2 * _4._3
-_3._1 * _2._3 * _4._2 - _4._1 * _2._2 * _3._3 + _4._1 * _2._3 * _3._2
val _12 = -_1._2 * _3._3 * _4._4 + _1._2 * _3._4 * _4._3 + _3._2 * _1._3 * _4._4
-_3._2 * _1._4 * _4._3 - _4._2 * _1._3 * _3._4 + _4._2 * _1._4 * _3._3
val _22 = _1._1 * _3._3 * _4._4 - _1._1 * _3._4 * _4._3 - _3._1 * _1._3 * _4._4
+_3._1 * _1._4 * _4._3 + _4._1 * _1._3 * _3._4 - _4._1 * _1._4 * _3._3
val _32 = -_1._1 * _3._2 * _4._4 + _1._1 * _3._4 * _4._2 + _3._1 * _1._2 * _4._4
-_3._1 * _1._4 * _4._2 - _4._1 * _1._2 * _3._4 + _4._1 * _1._4 * _3._2
val _42 = _1._1 * _3._2 * _4._3 - 开发者_JS百科_1._1 * _3._3 * _4._2 - _3._1 * _1._2 * _4._3
+_3._1 * _1._3 * _4._2 + _4._1 * _1._2 * _3._3 - _4._1 * _1._3 * _3._2
val _13 = _1._2 * _2._3 * _4._4 - _1._2 * _2._4 * _4._3 - _2._2 * _1._3 * _4._4
+_2._2 * _1._4 * _4._3 + _4._2 * _1._3 * _2._4 - _4._2 * _1._4 * _2._3
val _23 = -_1._1 * _2._3 * _4._4 + _1._1 * _2._4 * _4._3 + _2._1 * _1._3 * _4._4
-_2._1 * _1._4 * _4._3 - _4._1 * _1._3 * _2._4 + _4._1 * _1._4 * _2._3
val _33 = _1._1 * _2._2 * _4._4 - _1._1 * _2._4 * _4._2 - _2._1 * _1._2 * _4._4
+_2._1 * _1._4 * _4._2 + _4._1 * _1._2 * _2._4 - _4._1 * _1._4 * _2._2
val _43 = -_1._1 * _2._2 * _4._3 + _1._1 * _2._3 * _4._2 + _2._1 * _1._2 * _4._3
-_2._1 * _1._3 * _4._2 - _4._1 * _1._2 * _2._3 + _4._1 * _1._3 * _2._2
val _14 = -_1._2 * _2._3 * _3._4 + _1._2 * _2._4 * _3._3 + _2._2 * _1._3 * _3._4
-_2._2 * _1._4 * _3._3 - _3._2 * _1._3 * _2._4 + _3._2 * _1._4 * _2._3
val _24 = _1._1 * _2._3 * _3._4 - _1._1 * _2._4 * _3._3 - _2._1 * _1._3 * _3._4
+_2._1 * _1._4 * _3._3 + _3._1 * _1._3 * _2._4 - _3._1 * _1._4 * _2._3
val _34 = -_1._1 * _2._2 * _3._4 + _1._1 * _2._4 * _3._2 + _2._1 * _1._2 * _3._4
-_2._1 * _1._4 * _3._2 - _3._1 * _1._2 * _2._4 + _3._1 * _1._4 * _2._2
val _44 = _1._1 * _2._2 * _3._3 - _1._1 * _2._3 * _3._2 - _2._1 * _1._2 * _3._3
+_2._1 * _1._3 * _3._2 + _3._1 * _1._2 * _2._3 - _3._1 * _1._3 * _2._2
val det = _1._1 * _11 + _1._2 * _21 + _1._3 * _31 + _1._4 * _41
if (det == 0) this
else Matrix(
(_11, _12, _13, _14),
(_21, _22, _23, _24),
(_31, _32, _33, _34),
(_41, _42, _43, _44)
) * (1 / det)
}
def *(f: Float) = Matrix(
(_1._1 * f, _1._2 * f, _1._3 * f, _1._4 * f),
(_2._1 * f, _2._2 * f, _2._3 * f, _2._4 * f),
(_3._1 * f, _3._2 * f, _3._3 * f, _3._4 * f),
(_4._1 * f, _4._2 * f, _4._3 * f, _4._4 * f)
)
}
Also, can I load this Matrix into OpenGL or do I have to transpose it first. I really always get confused about this maths.
Inverting a matrix is usually a bad idea, because the calculations can be ill-conditioned.
If you want to solve a system of equations it's a better idea to do it using something like LU decomposition and forward-backward substitution, especially if you can reuse the decomposition to solve for several right hand side vectors.
This link shows a Java example for Gaussian elimination with pivoting.
Here's another thought: maybe you can just use Java libraries like Apache Commons Math, the successor to JAMA, in your application?
If you have a particular case in mind, I'd recommend entering it into Wolfram Alpha so you can see what the answer should be before you start coding.
I'm pretty sure Simplex3D implements this calculation (and very likely it's done correctly there).
If you want to play with numerics - by all means go ahead and do it yourself - you have some good suggestions from Jesper and duffymo (inverting matrices is not useful in practice - look into LU decomposition).
If however if you just want to Get Stuff DoneTM look into Scalala and Scalalab.
Either way you will need Linear Algebra background knowledge - which is incredibly useful math for lots of fields.
Look at Invertible matrix: Analytic solution on Wikipedia. The whole bunch of calculations at the top compute the adjugate of the matrix, from which the determinant is calculated, and the inverse is then 1 / det
times the adjugate matrix.
The whole calculation is written out explicitly for a 4 x 4 matrix in your code, so if there's a bug in it will take some effort to check the whole thing. The Wikipedia articles explain how it's supposed to work.
精彩评论