I'm starting to study SQL Server Analysis Services and I'm working my way through the training book, as well as the Developer Training Kit. In both, I find suggestions that the number of tables used in an OLAP database (ideally, star schema) is greatly reduced from the production OLTP database.
From the training kit:
We followed the data dimensional methodology to architect the data mart sch开发者_运维知识库ema. From some 200 tables in the operational database, the data mart schema contained about 10 dimension tables and 2 fact tables.
From what I understand, the operational databases are usually (somewhat) normalised and the data mart schemas are heavily denormalised. I also believe that denormalising data usually involves adding more tables, not less.
I can't see how you can go from 200 tables to 12, unless you only need to report on a subset of data. And if you do only need to report on a subset of data, why can't you just use the appropriate tables in the operational database (unless there are significant performance gains to be made by using a denormalised star schema)?
Denormalizing is exactly the opposite of Normalizing a database. In a normalized database everything is spit apart into different tables to support concurrent writes to the data. This also has the side effect of generating any given subset of data exactly once (In an ideal 3rd normal form data structrure). A draw back of normalizing is that reads take a lot longer because of the fact that the data is scattered and we need to join tables to make sense of it again (Joins are pretty expensive operations).
When we denormalize, we are taking the data from multiple tables and merging them in to one table. So now we have repeating data in these tables. The repeating data is useful because we don't have to make joins to any other table to get it anymore. Writing to the data store is normally a bad idea because it would mean alot of writes to change all of the data in a table, whereas it would only take one in a normalized database.
OLTP stands for Online Transactional Processing, notice the word Transactional. Transactions are write operations and the OLTP model is optimiized for this. OLAP stands for Online Analytical Processing, Analysis being the keyword meaning lots of reads.
Going from 200 tables to 12 in an OLTP to OLAP process will suprisingly hold nearly all of the data in the OLTP database plus more. The OLTP is unable to record all of the changes over time, but OLAP specializes in this so you get all of your historical data as well as current data.
The star schema is probably the most common for OLAP data stores, the snowflake schema is also pretty common. You should learn about both and how to properly use them. It's just another great tool in your arsenal.
These two books from IBM will answer your questions much more thouroughly and they are free pdf's.
http://www.redbooks.ibm.com/abstracts/sg247138.html
http://www.redbooks.ibm.com/abstracts/sg242238.html
精彩评论