I'm developing a 2d-platformer. Everything was fine until I've got some hard to solve problem. Level map is stored in dynamic multidemension array(char **map). It works fine, until I want to redefine it
Here's the part of code:
Map& Map::operator=(const Map& rhs)
{
if(width!=0||height!=0)
{
for(int i=0;i<width;i++)
delete[] map[i];
开发者_JAVA技巧 delete[] map;
} //deleting previously created array
height=rhs.height;
width=rhs.width; //receiving other map's size
map=new char* [width];
walkmap=new unsigned char* [width];
objmap=new char* [width];
for(int i=0;i<width;i++)
{
*(map+i)=new char[height];
} //creating new array
for(int h=0;h<height;h++)
for(int w=0;w<width;w++)
{
map[w][h]=rhs.map[w][h];
} //receiving new values
//...
}
Everything works fine for the first time, but when I need to redefine array for the second time my program crashes at the part, when array is receiving new values from another one. May be I miss something, but I can't find it! I was searching for this problem, but didn't find what I am doing wrong. Help me, please.
As always, Boost has an elegant and memory efficient multi-dimensional array class:
http://www.boost.org/doc/libs/1_39_0/libs/multi_array/doc/user.html
For example, to setup a 10 x 20 array of bool values:
boost::multi_array mtaFlagMatrix(boost::extents[10][20]);
Then to access its elements:
mtaFlagMatrix[2][6] = false; // indexes are zero-based - just like normal C arrays
...
if ( mtaFlagMatrix[2][6] )
{
...
}
Then, you can resize the array this way (existing values are preserved):
typedef boost::multi_array array_type;
array_type::extent_gen extents;
array_type A(extents[3][3][3]);
A[0][0][0] = 4;
A[2][2][2] = 5;
A.resize(extents[2][3][4]);
assert(A[0][0][0] == 4);
// A[2][2][2] is no longer valid.
This saved me a lot of time testing for extreme cases.
Your 2d array is not freeed properly. I advise you to use the Iliffe way of allocating 2d arrays which is faster and safer to use:
char** alloc_array( int h, int w )
{
typedef char* cptr;
int i;
char** m = new cptr[h];
m[0] = new char[h*w];
for(i=1;i<h;i++) m[i] = m[i-1]+w;
return m;
}
void release_array(char** m)
{
delete[] m[0];
delete[] m;
}
int main()
{
int r,c;
char** tab;
int width = 5;
int height = 3;
tab = alloc_array(height, width); /* column first */
for(r = 0;r<height;++r)
for(c = 0;c<width;++c)
tab[r][c] = (1+r+c);
for(r = 0;r<height;++r)
{
for(c = 0;c<width;++c)
{
printf("%d\t",tab[r][c]);
}
puts("");
}
release_array(tab);
}
This can be easily encapsulated in a neat 2d-array class or made to use std::vector instead of raw allocation. Prefer this way of doing 2d array as it is cache friendly , style provide the [][] access and is no slower and soemtimes faster than the polynomial 1d access.
精彩评论