I am working on some fourier transform code in matlab, and have come across the following:
xx = meshgrid(1:N);
% Center on DC
xx = xx - dcN;
% normalize dynamic range from -1 to 1
xx = xx./max(abs(xx(:)));
% form y coordinate from negative transpose of x coordinate (maintains symmetry about DC)
yy = -xx';
% compute the related radius of the x/y coordinates centered on DC
rr = sqrt(xx.^2 + yy.^2);
How can I generalize this for non-square matrices? This code is assuming my matrix is square, so dcN is the center of the square matrix (in other words, with 11x11, dcN = 6).
The math doesnt work out for that yy variable when the transpose is taken for a non-square matrix.
I have tried to figure out if I can make a meshgrid going from "top to bottom" ins开发者_StackOverflow社区tead of left to right - but I havent been able to figure taht out either.
Thanks
I have tried to figure out if I can make a meshgrid going from "top to bottom" instead of left to right - but I havent been able to figure taht out either.
>> N=5
N =
5
>> rot90(meshgrid(N:-1:1))
ans =
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
From your question I guess that you want to find rr
, i.e. the distance of any element in the matrix from the center.
If you want this for a M-by-N array, you'd do the following
%# note that using meshgrid instead of ndgrid will swap xx and yy
[xx,yy] = ndgrid(-(M-1)/2:(M-1)/2,-(N-1)/2:(N-1)/2);
%# normalize to the max of xx,yy
nrm = max((M-1)/2,(N-1)/2);
xx = xx./nrm;
yy = yy./nrm;
rr = sqrt(xx.^2+yy.^2)
精彩评论