I'm coming from a PHP environment (at least in terms of web dev) and into the beautiful world of Ruby, so I may have some dumb questions. I imagine there are some fundamentally different options available when not using PHP.
In PHP, we use memcache to store alerts we want to display in a bar along the top of the page. When something happens that generates an alert (such as a new blog post being made), a cron script that runs once every 5 minutes or so puts that information into memcache.
Now when a user visits the site, we look in memcache to find any alerts that they haven't already dismissed and we display them.
What I'm guessing I can do differently in Rails, is to by-pass the need for a cron script, and also the need to look in memcache on every request, by using a Singleton and a polling process running in a separate thread to copy from memcache to this singleton. This would, in theory, be more optimized than checking memcache once-per-request and also encapsulate the polling logic into one place, rather than being split between a cron task and the loo开发者_如何学JAVAkup logic.
My question is: are there any caveats to having some sort of runloop in the background while a Rails app is running? I understand the implications of multithreading, from Objective-C/Java, but I'm asking specifically about the Rails (3) environment.
Basically something like:
class SiteAlertsMap < Hash
include Singleton
def initialize
super
begin_polling
end
# ... SNIP, any specific methods etc ...
private
def begin_polling
# Create some other Thread here, which polls at set intervals
end
end
This leads me into a similar question. We push (encrypted) tasks onto an SQS queue, for things related to e-commerce and for long-running background tasks. We don't use cron for this, but rather we have a worker daemon written in PHP, which runs in the background. Right now when we deploy, we have to shut down this worker and start it again from the new code-base. In Rails, could I somehow have this process start and stop with the rails server (unicorn) itself? I don't think that's something I'd running on the main process in a separate thread, since we often want to control it as a process by itself, but it would be nice if it just conveniently ran when the web application was running.
Threading for background processes in ruby would be a terrible mistake, especially since you're using a multi-process server. Using unicorn with say 4 worker processes would mean that you'd be polling from each of them, which is not what you want. Ruby doesn't really have real threads, it has green threads in 1.8 and a global interpreter lock in 1.9 IIRC. Many gems and libraries are also obnoxiously unthreadsafe.
Using memcache is still your best option and, if you have it set up correctly, you should only see it adding a millisecond or two to the request time. Another option which would give you the benefit of persisting these alerts while incurring minimal additional overhead would be to store these alerts in redis. This would better protect you against things like memcache crashing or server reboots.
For the background jobs you should use a similar approach to what you have now, but there are several off the shelf handlers for this like resque, delayed_job, and a few others. If you absolutely have to use SQS as the backend queue, you might be able to find some code to help you, but otherwise you could write it yourself. This still requires the other daemon to be rebooted whenever there is a code change. In practice this isn't a huge concern as best practices dictate using a deployment system like capistrano where a rule can easily be added to bounce the daemon on deploy. I use monit to watch the daemon process, so restarting it is as easy as telling monit to restart it.
In general, Ruby is not like Java/Objective-C when it comes to threads. It follows the more Unix-like model of process based isolation, but the community has come up with best practices and ways to make this less painful than in other languages. Ruby does require a bit more attention to setting up its stack as it is not as simple as enabling mod_php
and copying some files around, but once the choices and architecture is understood, it is easier to reason about how your application works. The process model, in my opinion, is much better for web apps as it isolates code and state from the effects of other running operations. The isolation also makes the app easier to work with in a distributed system.
精彩评论