a = np.random.random((512,512,3)).astype(np.float32)
b = np.ones((512,512,1), dtype=np.int32)
c = a / b
c.dtype
>> dtype('float64')
Dividing a float32 matrix by a int32 matrix gives a float64 matrix. Currently I have to do
return c.astype(np.float32)
This is extra work for the CPU. Is there a way for me to avoid the final conversi开发者_JAVA技巧on and telling numpy to do the work in float32?
You will have to use the out
argument of np.divide()
.
[~/scratch]
|1> a = np.random.random((512,512,3)).astype(np.float32)
[~/scratch]
|2> b = np.ones((512,512,1), dtype=np.int32)
[~/scratch]
|3> c = np.empty_like(a)
[~/scratch]
|4> c = np.divide(a, b, c)
[~/scratch]
|5> c.dtype
dtype('float32')
In numpy 1.6, you will be able to do c = np.divide(a, b, dtype=np.float32)
精彩评论