I'm new to DDD, and I'm trying to apply it in real life. There is no questions about such validation logic, as null check, empty strings check, etc - that goes directly to entity constructor/property. But where to put validation of some global rules like 'Unique user name'?
So, we have entity User
public class User : IAggregateRoot
{
private string _name;
public string Name
{
get { return _name; }
set { _name = value; }
}
// other data and behavior
}
And repository for users开发者_开发技巧
public interface IUserRepository : IRepository<User>
{
User FindByName(string name);
}
Options are:
- Inject repository to entity
- Inject repository to factory
- Create operation on domain service
- ???
And each option more detailed:
1 .Inject repository to entity
I can query repository in entities constructor/property. But I think that keeping reference to repository in entity is a bad smell.
public User(IUserRepository repository)
{
_repository = repository;
}
public string Name
{
get { return _name; }
set
{
if (_repository.FindByName(value) != null)
throw new UserAlreadyExistsException();
_name = value;
}
}
Update: We can use DI to hide dependency between User and IUserRepository via Specification object.
2. Inject repository to factory
I can put this verification logic in UserFactory. But what if we want to change name of already existing user?
3. Create operation on domain service
I can create domain service for creating and editing users. But someone can directly edit name of user without calling that service...
public class AdministrationService
{
private IUserRepository _userRepository;
public AdministrationService(IUserRepository userRepository)
{
_userRepository = userRepository;
}
public void RenameUser(string oldName, string newName)
{
if (_userRepository.FindByName(newName) != null)
throw new UserAlreadyExistException();
User user = _userRepository.FindByName(oldName);
user.Name = newName;
_userRepository.Save(user);
}
}
4. ???
Where do you put global validation logic for entities?
Thanks!
Most of the times it is best to place these kind of rules in Specification
objects.
You can place these Specification
s in your domain packages, so anybody using your domain package has access to them. Using a specification, you can bundle your business rules with your entities, without creating difficult-to-read entities with undesired dependencies on services and repositories. If needed, you can inject dependencies on services or repositories into a specification.
Depending on the context, you can build different validators using the specification objects.
Main concern of entities should be keeping track of business state - that's enough of a responsibility and they shouldn't be concerned with validation.
Example
public class User
{
public string Id { get; set; }
public string Name { get; set; }
}
Two specifications:
public class IdNotEmptySpecification : ISpecification<User>
{
public bool IsSatisfiedBy(User subject)
{
return !string.IsNullOrEmpty(subject.Id);
}
}
public class NameNotTakenSpecification : ISpecification<User>
{
// omitted code to set service; better use DI
private Service.IUserNameService UserNameService { get; set; }
public bool IsSatisfiedBy(User subject)
{
return UserNameService.NameIsAvailable(subject.Name);
}
}
And a validator:
public class UserPersistenceValidator : IValidator<User>
{
private readonly IList<ISpecification<User>> Rules =
new List<ISpecification<User>>
{
new IdNotEmptySpecification(),
new NameNotEmptySpecification(),
new NameNotTakenSpecification()
// and more ... better use DI to fill this list
};
public bool IsValid(User entity)
{
return BrokenRules(entity).Count() == 0;
}
public IEnumerable<string> BrokenRules(User entity)
{
return Rules.Where(rule => !rule.IsSatisfiedBy(entity))
.Select(rule => GetMessageForBrokenRule(rule));
}
// ...
}
For completeness, the interfaces:
public interface IValidator<T>
{
bool IsValid(T entity);
IEnumerable<string> BrokenRules(T entity);
}
public interface ISpecification<T>
{
bool IsSatisfiedBy(T subject);
}
Notes
I think Vijay Patel's earlier answer is in the right direction, but I feel it's a bit off. He suggests that the user entity depends on the specification, where I belief that this should be the other way around. This way, you can let the specification depend on services, repositories and context in general, without making your entity depend on them through a specification dependency.
References
A related question with a good answer with example: Validation in a Domain Driven Design.
Eric Evans describes the use of the specification pattern for validation, selection and object construction in chapter 9, pp 145.
This article on the specification pattern with an application in .Net might be of interest to you.
I would not recommend disallowing to change properties in entity, if it's a user input. For example, if validation did not pass, you can still use the instance to display it in user interface with validation results, allowing user to correct the error.
Jimmy Nilsson in his "Applying Domain-Driven Design and Patterns" recommends to validate for a particular operation, not just for persisting. While an entity could be successfully persisted, the real validation occurs when an entity is about to change it's state, for example 'Ordered' state changes to 'Purchased'.
While creating, the instance must be valid-for-saving, which involves checking for uniqueness. It's different from valid-for-ordering, where not only uniqueness must be checked, but also, for example, creditability of a client, and availability at the store.
So, validation logic should not be invoked on a property assignments, it should be invoked upon aggregate level operations, whether they are persistent or not.
Edit: Judging from the other answers, the correct name for such a 'domain service' is specification. I've updated my answer to reflect this, including a more detailed code sample.
I'd go with option 3; create a domain service specification which encapsulates the actual logic that performs the validation. For example, the specification initially calls a repository, but you could replace it with a web service call at a later stage. Having all that logic behind an abstract specification will keep the overall design more flexible.
To prevent someone from editing the name without validating it, make the specification a required aspect of editing the name. You can achieve this by changing the API of your entity to something like this:
public class User
{
public string Name { get; private set; }
public void SetName(string name, ISpecification<User, string> specification)
{
// Insert basic null validation here.
if (!specification.IsSatisfiedBy(this, name))
{
// Throw some validation exception.
}
this.Name = name;
}
}
public interface ISpecification<TType, TValue>
{
bool IsSatisfiedBy(TType obj, TValue value);
}
public class UniqueUserNameSpecification : ISpecification<User, string>
{
private IUserRepository repository;
public UniqueUserNameSpecification(IUserRepository repository)
{
this.repository = repository;
}
public bool IsSatisfiedBy(User obj, string value)
{
if (value == obj.Name)
{
return true;
}
// Use this.repository for further validation of the name.
}
}
Your calling code would look something like this:
var userRepository = IoC.Resolve<IUserRepository>();
var specification = new UniqueUserNameSpecification(userRepository);
user.SetName("John", specification);
And of course, you can mock ISpecification
in your unit tests for easier testing.
I’m not an expert on DDD but I have asked myself the same questions and this is what I came up with: Validation logic should normally go into the constructor/factory and setters. This way you guarantee that you always have valid domain objects. But if the validation involves database queries that impact your performance, an efficient implementation requires a different design.
(1) Injecting Entities: Injecting entities can be technical difficult and also makes managing application performance very hard due to the fragmentation of you database logic. Seemingly simple operations can now have an unexpectedly performance impact. It also makes it impossible to optimize your domain object for operations on groups of the same kind of entities, you no longer can write a single group query, and instead you always have individual queries for each entity.
(2) Injecting repository: You should not put any business logic in repositories. Keep repositories simple and focused. They should act as if they were collections and only contain logic for adding, removing and finding objects (some even spinoff the find methods to other objects).
(3) Domain service This seems the most logical place to handle the validation that requires database querying. A good implementation would make the constructor/factory and setters involved package private, so that the entities can only be created / modified with the domain service.
I would use a Specification to encapsulate the rule. You can then call when the UserName property is updated (or from anywhere else that might need it):
public class UniqueUserNameSpecification : ISpecification
{
public bool IsSatisifiedBy(User user)
{
// Check if the username is unique here
}
}
public class User
{
string _Name;
UniqueUserNameSpecification _UniqueUserNameSpecification; // You decide how this is injected
public string Name
{
get { return _Name; }
set
{
if (_UniqueUserNameSpecification.IsSatisifiedBy(this))
{
_Name = value;
}
else
{
// Execute your custom warning here
}
}
}
}
It won't matter if another developer tries to modify User.Name
directly, because the rule will always execute.
Find out more here
In my CQRS Framework, every Command Handler class also contains a ValidateCommand method, which then calls the appropriate business/validation logic in the Domain (mostly implemented as Entity methods or Entity static methods).
So the caller would do like so:
if (cmdService.ValidateCommand(myCommand) == ValidationResult.OK)
{
// Now we can assume there will be no business reason to reject
// the command
cmdService.ExecuteCommand(myCommand); // Async
}
Every specialized Command Handler contains the wrapper logic, for instance:
public ValidationResult ValidateCommand(MakeCustomerGold command)
{
var result = new ValidationResult();
if (Customer.CanMakeGold(command.CustomerId))
{
// "OK" logic here
} else {
// "Not OK" logic here
}
}
The ExecuteCommand method of the command handler will then call the ValidateCommand() again, so even if the client didn't bother, nothing will happen in the Domain that is not supposed to.
in short you have 4 options:
IsValid method: transition an entity to a state (potentially invalid) and ask it to validate itself.
Validation in application services.
TryExecute pattern.
Execute / CanExecute pattern.
read more here
Create a method, for example, called IsUserNameValid() and make that accessible from everywhere. I would put it in the user service myself. Doing this will not limit you when future changes arise. It keeps the validation code in one place (implementation), and other code that depends on it will not have to change if the validation changes You may find that you need to call this from multiple places later on, such as the ui for visual indication without having to resort to exception handling. The service layer for correct operations, and the repository (cache, db, etc.) layer to ensure that stored items are valid.
I like option 3. Simplest implementation could look so:
public interface IUser
{
string Name { get; }
bool IsNew { get; }
}
public class User : IUser
{
public string Name { get; private set; }
public bool IsNew { get; private set; }
}
public class UserService : IUserService
{
public void ValidateUser(IUser user)
{
var repository = RepositoryFactory.GetUserRepository(); // use IoC if needed
if (user.IsNew && repository.UserExists(user.Name))
throw new ValidationException("Username already exists");
}
}
Create domain service
Or I can create domain service for creating and editing users. But someone can directly edit name of user without calling that service...
If you properly designed your entities this should not be an issue.
精彩评论