I've written this code to perform the 1-d convolution of a 2-d matrix valued function (k is my time index, kend is on the order of 10e3). Is there a faster or cleaner way to do this, perhaps usi开发者_开发知识库ng built in functions?
for k=1:kend
C(:,:,k)=zeros(3);
for l=0:k-1
C(:,:,k)=C(:,:,k)+A(:,:,k-l)*B(:,:,l+1);
end
end
NEW SOLUTION:
This is a newer solution built on the older solution, which solved the previously given formula. The code in the question is actually a modification of that formula, in which the overlap between the two matrices in the third dimension is repeatedly shifted (it's akin to a convolution along the third dimension of the data). The previous solution I gave only computed the result for the last iteration of the code in the question (i.e. k = kend
). So, here's a full solution that should be much more efficient than the code in the question for kend
on the order of 1000:
kend = size(A,3); %# Get the value for kend
C = zeros(3,3,kend); %# Preallocate the output
Anew = reshape(flipdim(A,3),3,[]); %# Reshape A into a 3-by-3*kend matrix
Bnew = reshape(permute(B,[1 3 2]),[],3); %# Reshape B into a 3*kend-by-3 matrix
for k = 1:kend
C(:,:,k) = Anew(:,3*(kend-k)+1:end)*Bnew(1:3*k,:); %# Index Anew and Bnew so
end %# they overlap in steps
%# of three
Even when using just kend = 100
, this solution came out to be about 30 times faster for me than the one in the question and about 4 times faster than a pure for-loop-based solution (which would involve 5 loops!). Note that the discussion below of floating-point accuracy still applies, so it is normal and expected that you will see slight differences between the solutions on the order of the relative floating-point accuracy.
OLD SOLUTION:
Based on this formula you linked to in a comment:
it appears that you actually want to do something different than the code you provided in the question. Assuming A
and B
are 3-by-3-by-k matrices, the result C
should be a 3-by-3 matrix and the formula from your link written out as a set of nested for loops would look like this:
%# Solution #1: for loops
k = size(A,3);
C = zeros(3);
for i = 1:3
for j = 1:3
for r = 1:3
for l = 0:k-1
C(i,j) = C(i,j) + A(i,r,k-l)*B(r,j,l+1);
end
end
end
end
Now, it is possible to perform this operation without any for loops by reshaping and reorganizing A
and B
appropriately:
%# Solution #2: matrix multiply
Anew = reshape(flipdim(A,3),3,[]); %# Create a 3-by-3*k matrix
Bnew = reshape(permute(B,[1 3 2]),[],3); %# Create a 3*k-by-3 matrix
C = Anew*Bnew; %# Perform a single matrix multiply
You could even rework the code you have in your question to create a solution with a single loop that performs a matrix multiply of your 3-by-3 submatrices:
%# Solution #3: mixed (loop and matrix multiplication)
k = size(A,3);
C = zeros(3);
for l = 0:k-1
C = C + A(:,:,k-l)*B(:,:,l+1);
end
So now the question: Which one of these approaches is faster/cleaner?
Well, "cleaner" is very subjective, and I honestly couldn't tell you which of the above pieces of code makes it any easier to understand what the operation is doing. All the loops and variables in the first solution make it a little hard to track what's going on, but it clearly mirrors the formula. The second solution breaks it all down into a simple matrix operation, but it's difficult to see how it relates to the original formula. The third solution seems like a middle-ground between the two.
So, let's make speed the tie-breaker. If I time the above solutions for a number of values of k
, I get these results (in seconds needed to perform 10,000 iterations of the given solution, MATLAB R2010b):
k | loop | matrix multiply | mixed
-----+--------+-----------------+--------
5 | 0.0915 | 0.3242 | 0.1657
10 | 0.1094 | 0.3093 | 0.2981
20 | 0.1674 | 0.3301 | 0.5838
50 | 0.3181 | 0.3737 | 1.3585
100 | 0.5800 | 0.4131 | 2.7311 * The matrix multiply is now fastest
200 | 1.2859 | 0.5538 | 5.9280
Well, it turns out that for smaller values of k
(around 50 or less) the for-loop solution actually wins out, showing once again that for loops are not as "evil" as they used to be considered in older versions of MATLAB. Under certain circumstances, they can be more efficient than a clever vectorization. However, when the value of k
is larger than around 100, the vectorized matrix-multiply solution starts to win out, scaling much more nicely with increasing k
than the for-loop solution does. The mixed for-loop/matrix-multiply solution scales atrociously for reasons that I'm not exactly sure of.
So, if you expect k
to be large, I'd go with the vectorized matrix-multiply solution. One thing to keep in mind is that the results you get from each solution (the matrix C
) will differ ever so slightly (on the level of the floating-point precision) since the order of additions and multiplications performed for each solution are different, thus leading to a difference in accumulation of rounding errors. In short, the difference between the results for these solutions should be negligible, but you should be aware of it.
Have you looked into Matlab's conv method?
I can't compare it against your provided code, because what you provided gives me a problem with trying to access the zeroth element of A. (When k=1
, k-1=0
.)
Have you considered using FFTs to convolve? A convolution operation is simply a point-wise multiplication in the frequency domain. You'll have to take some precaution with finite sequences, as you'll end up with circular convolution if you're not careful (but this is trivial to take care of).
Here's a simple example for a 1D case.
>> a=rand(4,1);
>> b=rand(3,1);
>> c=conv(a,b)
c =
0.1167
0.3133
0.4024
0.5023
0.6454
0.3511
The same using FFTs
>> A=fft(a,6);
>> B=fft(b,6);
>> C=real(ifft(A.*B))
C =
0.1167
0.3133
0.4024
0.5023
0.6454
0.3511
A convolution of an M
point vector and an N
point vector results in an M+N-1
point vector. So, I've padded each of the vectors a
and b
with zeros before taking the FFT (this is automatically taken care of when I take the 4+3-1=6
point FFT of it).
EDIT
Although the equation that you showed is similar to a circular convolution, it's not exactly it. So you can ditch the FFT approach, and the built-in conv*
functions. To answer your question, here's the same operation done without explicit loops:
dim1=3;dim2=dim1;
dim3=10;
a=rand(dim1,dim2,dim3);
b=rand(dim1,dim2,dim3);
mIndx=cellfun(@(x)(1:x),num2cell(1:dim3),'UniformOutput',false);
fun=@(x)sum(reshape(cell2mat(cellfun(@(y,z)a(:,:,y)*b(:,:,z),num2cell(x),num2cell(fliplr(x)),'UniformOutput',false)),[dim1,dim2,max(x)]),3);
c=reshape(cell2mat(cellfun(@(x)fun(x),mIndx,'UniformOutput',false)),[dim1,dim2,dim3]);
mIndx
here is a cell, where thei
th cell contains a vector1:i
. This is yourl
index (as others have noted, please don't usel
as a variable name).- The next line is an anonymous function that does the convolution operation, making use of the fact that the
k
index is just thel
index flipped around. The operations are carried out on individual cells, and then assembled. - The last line actually performs the operations on the matrices.
The answer is the same as that obtained with the loops. However, you'll find that the looped solution is actually an order of magnitude faster (I averaged 0.007s for my code and 0.0006s for the loop). This is because the loop is pretty straightforward, whereas with this sort of nested construction, there's plenty of function call overheads and repeated reshaping that slow it down.
MATLAB's loops have come a long way since the early days when loops were dreaded. Certainly, vectorized operations are blazing fast; but not everything can be vectorized, and sometimes, loops are more efficient than such convoluted anonymous functions. I could probably shave off a few more tenths here and there by optimizing my construction (or maybe taking a different approach), but I'm not going to do that.
Remember that good code should be readable, as well as efficient and minor optimization at the cost of readability serves no one. Although I wrote the code above, I certainly will not be able to decipher what it does if I revisited it a month later. Your looped code was clear, readable and fast and I would suggest that you stick with it.
精彩评论