I want to implement an AVL Tree in Java, here is what I have so far:
public class AVLNode {
private int size; /** The size of the tree. */
private int height; /** The height of the tree. */
private Object key;/** The key of the current node. */
private Object data;/** The data of the current node. */
private Comparator comp;/** The {@link Comparator} used by the node. */
/* All the nodes pointed by the current node.*/
private AVLNode left,right,parent,succ,pred;
/* Instantiates a new AVL node.
*
* @param key the key of the node
* @param data the data that the node should keep
* @param comp the comparator to be used in the tree
*/
public AVLNode(Object key, Object data, Comparator comp) {
this(key,data,comp,null);
}
/* Instantiates a new AVL node.
*
* @param key the key of the node
* @param data the data that the node should keep
* @param comp the comparator to be used in the tree
* @param parent the parent of the created node
*/
public AVLNode(Object key, Object data, Comparator comp, AVLNode parent) {
this.data = data;
this.key = key;
this.comp = comp;
this.parent = parent;
this.left = null;
this.right = null;
this.succ = null;
this.pred = null;
this.size = 1;
this.height = 0;
}
/* Adds the given data to the tree.
*
* @param key the key
* @param data the data
* @return the root of the tree after insertion and rotations
* @author <b>students</b>
*/
public AVLNode add(Object key,Object data) {
return null;
}
/* Removes a N开发者_JAVA百科ode which key is equal
* (by {@link Comparator}) to the given argument.
*
* @param key the key
* @return the root after deletion and rotations
* @author <b>students</b>
*/
public AVLNode remove(Object key) {
return null;
}
I need to implement the add and remove functions. Here is what I have so far, both should run in O(log(n))
time. Both should return the root of the whole tree:
/* Adds a new Node into the tree.
* @param key the key of the new node
* @param data the data of the new node
*/
public void add(Object key,Object data){
if (isEmpty()){
this.root = new AVLNode(key,data,comp);
}
else{
root = this.root.add(key,data);
}
}
/**
* Removes a node n from the tree where
* n.key is equal (by {@link Comparator}) to the given key.
*
* @param key the key
*/
public void remove(Object key){
if (isEmpty()){
return;
}
else
root = this.root.remove(key);
}
I need help on making the add and remove functions.
Is there any guide to describe how the add and remove operations work? A library to copy or something where I can figure out how/why AVL Trees work?
You can try my AVL Tree which is linked here. Let me know if you have any additional questions.
Source in case the link goes down
package com.jwetherell.algorithms.data_structures;
import java.util.ArrayList;
import java.util.List;
/**
* An AVL tree is a self-balancing binary search tree, and it was the first such
* data structure to be invented. In an AVL tree, the heights of the two child
* subtrees of any node differ by at most one. AVL trees are often compared with
* red-black trees because they support the same set of operations and because
* red-black trees also take O(log n) time for the basic operations. Because AVL
* trees are more rigidly balanced, they are faster than red-black trees for
* lookup intensive applications. However, red-black trees are faster for
* insertion and removal.
*
* http://en.wikipedia.org/wiki/AVL_tree
*
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class AVLTree<T extends Comparable<T>> extends BinarySearchTree<T> implements BinarySearchTree.INodeCreator<T> {
private enum Balance {
LEFT_LEFT, LEFT_RIGHT, RIGHT_LEFT, RIGHT_RIGHT
};
/**
* Default constructor.
*/
public AVLTree() {
this.creator = this;
}
/**
* Constructor with external Node creator.
*/
public AVLTree(INodeCreator<T> creator) {
super(creator);
}
/**
* {@inheritDoc}
*/
@Override
protected Node<T> addValue(T id) {
Node<T> nodeToReturn = super.addValue(id);
AVLNode<T> nodeAdded = (AVLNode<T>) nodeToReturn;
while (nodeAdded != null) {
nodeAdded.updateHeight();
balanceAfterInsert(nodeAdded);
nodeAdded = (AVLNode<T>) nodeAdded.parent;
}
return nodeToReturn;
}
/**
* Balance the tree according to the AVL post-insert algorithm.
*
* @param node
* Root of tree to balance.
*/
private void balanceAfterInsert(AVLNode<T> node) {
int balanceFactor = node.getBalanceFactor();
if (balanceFactor > 1 || balanceFactor < -1) {
AVLNode<T> parent = null;
AVLNode<T> child = null;
Balance balance = null;
if (balanceFactor < 0) {
parent = (AVLNode<T>) node.lesser;
balanceFactor = parent.getBalanceFactor();
if (balanceFactor < 0) {
child = (AVLNode<T>) parent.lesser;
balance = Balance.LEFT_LEFT;
} else {
child = (AVLNode<T>) parent.greater;
balance = Balance.LEFT_RIGHT;
}
} else {
parent = (AVLNode<T>) node.greater;
balanceFactor = parent.getBalanceFactor();
if (balanceFactor < 0) {
child = (AVLNode<T>) parent.lesser;
balance = Balance.RIGHT_LEFT;
} else {
child = (AVLNode<T>) parent.greater;
balance = Balance.RIGHT_RIGHT;
}
}
if (balance == Balance.LEFT_RIGHT) {
// Left-Right (Left rotation, right rotation)
rotateLeft(parent);
rotateRight(node);
} else if (balance == Balance.RIGHT_LEFT) {
// Right-Left (Right rotation, left rotation)
rotateRight(parent);
rotateLeft(node);
} else if (balance == Balance.LEFT_LEFT) {
// Left-Left (Right rotation)
rotateRight(node);
} else {
// Right-Right (Left rotation)
rotateLeft(node);
}
node.updateHeight(); // New child node
child.updateHeight(); // New child node
parent.updateHeight(); // New Parent node
}
}
/**
* {@inheritDoc}
*/
@Override
protected Node<T> removeValue(T value) {
// Find node to remove
Node<T> nodeToRemoved = this.getNode(value);
if (nodeToRemoved != null) {
// Find the replacement node
Node<T> replacementNode = this.getReplacementNode(nodeToRemoved);
// Find the parent of the replacement node to re-factor the
// height/balance of the tree
AVLNode<T> nodeToRefactor = null;
if (replacementNode != null)
nodeToRefactor = (AVLNode<T>) replacementNode.parent;
if (nodeToRefactor == null)
nodeToRefactor = (AVLNode<T>) nodeToRemoved.parent;
if (nodeToRefactor != null && nodeToRefactor.equals(nodeToRemoved))
nodeToRefactor = (AVLNode<T>) replacementNode;
// Replace the node
replaceNodeWithNode(nodeToRemoved, replacementNode);
// Re-balance the tree all the way up the tree
if (nodeToRefactor != null) {
while (nodeToRefactor != null) {
nodeToRefactor.updateHeight();
balanceAfterDelete(nodeToRefactor);
nodeToRefactor = (AVLNode<T>) nodeToRefactor.parent;
}
}
}
return nodeToRemoved;
}
/**
* Balance the tree according to the AVL post-delete algorithm.
*
* @param node
* Root of tree to balance.
*/
private void balanceAfterDelete(AVLNode<T> node) {
int balanceFactor = node.getBalanceFactor();
if (balanceFactor == -2 || balanceFactor == 2) {
if (balanceFactor == -2) {
AVLNode<T> ll = (AVLNode<T>) node.lesser.lesser;
int lesser = (ll != null) ? ll.height : 0;
AVLNode<T> lr = (AVLNode<T>) node.lesser.greater;
int greater = (lr != null) ? lr.height : 0;
if (lesser >= greater) {
rotateRight(node);
node.updateHeight();
if (node.parent != null)
((AVLNode<T>) node.parent).updateHeight();
} else {
rotateLeft(node.lesser);
rotateRight(node);
AVLNode<T> p = (AVLNode<T>) node.parent;
if (p.lesser != null)
((AVLNode<T>) p.lesser).updateHeight();
if (p.greater != null)
((AVLNode<T>) p.greater).updateHeight();
p.updateHeight();
}
} else if (balanceFactor == 2) {
AVLNode<T> rr = (AVLNode<T>) node.greater.greater;
int greater = (rr != null) ? rr.height : 0;
AVLNode<T> rl = (AVLNode<T>) node.greater.lesser;
int lesser = (rl != null) ? rl.height : 0;
if (greater >= lesser) {
rotateLeft(node);
node.updateHeight();
if (node.parent != null)
((AVLNode<T>) node.parent).updateHeight();
} else {
rotateRight(node.greater);
rotateLeft(node);
AVLNode<T> p = (AVLNode<T>) node.parent;
if (p.lesser != null)
((AVLNode<T>) p.lesser).updateHeight();
if (p.greater != null)
((AVLNode<T>) p.greater).updateHeight();
p.updateHeight();
}
}
}
}
/**
* {@inheritDoc}
*/
@Override
protected boolean validateNode(Node<T> node) {
boolean bst = super.validateNode(node);
if (!bst)
return false;
AVLNode<T> avlNode = (AVLNode<T>) node;
int balanceFactor = avlNode.getBalanceFactor();
if (balanceFactor > 1 || balanceFactor < -1) {
return false;
}
if (avlNode.isLeaf()) {
if (avlNode.height != 1)
return false;
} else {
AVLNode<T> avlNodeLesser = (AVLNode<T>) avlNode.lesser;
int lesserHeight = 1;
if (avlNodeLesser != null)
lesserHeight = avlNodeLesser.height;
AVLNode<T> avlNodeGreater = (AVLNode<T>) avlNode.greater;
int greaterHeight = 1;
if (avlNodeGreater != null)
greaterHeight = avlNodeGreater.height;
if (avlNode.height == (lesserHeight + 1) || avlNode.height == (greaterHeight + 1)) {
return true;
} else {
return false;
}
}
return true;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return AVLTreePrinter.getString(this);
}
/**
* {@inheritDoc}
*/
@Override
public Node<T> createNewNode(Node<T> parent, T id) {
return (new AVLNode<T>(parent, id));
}
protected static class AVLNode<T extends Comparable<T>> extends Node<T> {
protected int height = 1;
/**
* Constructor for an AVL node
*
* @param parent
* Parent of the node in the tree, can be NULL.
* @param value
* Value of the node in the tree.
*/
protected AVLNode(Node<T> parent, T value) {
super(parent, value);
}
/**
* Determines is this node is a leaf (has no children).
*
* @return True if this node is a leaf.
*/
protected boolean isLeaf() {
return ((lesser == null) && (greater == null));
}
/**
* Updates the height of this node based on it's children.
*/
protected void updateHeight() {
int lesserHeight = 0;
int greaterHeight = 0;
if (lesser != null) {
AVLNode<T> lesserAVLNode = (AVLNode<T>) lesser;
lesserHeight = lesserAVLNode.height;
}
if (greater != null) {
AVLNode<T> greaterAVLNode = (AVLNode<T>) greater;
greaterHeight = greaterAVLNode.height;
}
if (lesserHeight > greaterHeight) {
height = lesserHeight + 1;
} else {
height = greaterHeight + 1;
}
}
/**
* Get the balance factor for this node.
*
* @return An integer representing the balance factor for this node. It
* will be negative if the lesser branch is longer than the
* greater branch.
*/
protected int getBalanceFactor() {
int lesserHeight = 0;
int greaterHeight = 0;
if (lesser != null) {
AVLNode<T> lesserAVLNode = (AVLNode<T>) lesser;
lesserHeight = lesserAVLNode.height;
}
if (greater != null) {
AVLNode<T> greaterAVLNode = (AVLNode<T>) greater;
greaterHeight = greaterAVLNode.height;
}
return greaterHeight - lesserHeight;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return "value=" + id + " height=" + height + " parent=" + ((parent != null) ? parent.id : "NULL")
+ " lesser=" + ((lesser != null) ? lesser.id : "NULL") + " greater="
+ ((greater != null) ? greater.id : "NULL");
}
}
protected static class AVLTreePrinter {
public static <T extends Comparable<T>> String getString(AVLTree<T> tree) {
if (tree.root == null)
return "Tree has no nodes.";
return getString((AVLNode<T>) tree.root, "", true);
}
public static <T extends Comparable<T>> String getString(AVLNode<T> node) {
if (node == null)
return "Sub-tree has no nodes.";
return getString(node, "", true);
}
private static <T extends Comparable<T>> String getString(AVLNode<T> node, String prefix, boolean isTail) {
StringBuilder builder = new StringBuilder();
builder.append(prefix + (isTail ? "└── " : "├── ") + "(" + node.height + ") " + node.id + "\n");
List<Node<T>> children = null;
if (node.lesser != null || node.greater != null) {
children = new ArrayList<Node<T>>(2);
if (node.lesser != null)
children.add(node.lesser);
if (node.greater != null)
children.add(node.greater);
}
if (children != null) {
for (int i = 0; i < children.size() - 1; i++) {
builder.append(getString((AVLNode<T>) children.get(i), prefix + (isTail ? " " : "│ "), false));
}
if (children.size() >= 1) {
builder.append(getString((AVLNode<T>) children.get(children.size() - 1), prefix
+ (isTail ? " " : "│ "), true));
}
}
return builder.toString();
}
}
}
I have a video playlist explaining how AVL trees work that I recommend.
Here's a working implementation of an AVL tree which is well documented. The add/remove operations work just like a regular binary search tree expect that you need to update the balance factor value as you go.
Note that this is a recursive implementation which is much simpler to understand but likely slower than its iterative counterpart.
This data structure was taken from my github repo
/**
* This file contains an implementation of an AVL tree. An AVL tree
* is a special type of binary tree which self balances itself to keep
* operations logarithmic.
*
* @author William Fiset, william.alexandre.fiset@gmail.com
**/
public class AVLTreeRecursive <T extends Comparable<T>> implements Iterable<T> {
class Node {
// 'bf' is short for Balance Factor
int bf;
// The value/data contained within the node.
T value;
// The height of this node in the tree.
int height;
// The left and the right children of this node.
Node left, right;
public Node(T value) {
this.value = value;
}
}
// The root node of the AVL tree.
Node root;
// Tracks the number of nodes inside the tree.
private int nodeCount = 0;
// The height of a rooted tree is the number of edges between the tree's
// root and its furthest leaf. This means that a tree containing a single
// node has a height of 0.
public int height() {
if (root == null) return 0;
return root.height;
}
// Returns the number of nodes in the tree.
public int size() {
return nodeCount;
}
// Returns whether or not the tree is empty.
public boolean isEmpty() {
return size() == 0;
}
// Return true/false depending on whether a value exists in the tree.
public boolean contains(T value) {
return contains(root, value);
}
// Recursive contains helper method.
private boolean contains(Node node, T value) {
if (node == null) return false;
// Compare current value to the value in the node.
int cmp = value.compareTo(node.value);
// Dig into left subtree.
if (cmp < 0) return contains(node.left, value);
// Dig into right subtree.
if (cmp > 0) return contains(node.right, value);
// Found value in tree.
return true;
}
// Insert/add a value to the AVL tree. The value must not be null, O(log(n))
public boolean insert(T value) {
if (value == null) return false;
if (!contains(root, value)) {
root = insert(root, value);
nodeCount++;
return true;
}
return false;
}
// Inserts a value inside the AVL tree.
private Node insert(Node node, T value) {
// Base case.
if (node == null) return new Node(value);
// Compare current value to the value in the node.
int cmp = value.compareTo(node.value);
// Insert node in left subtree.
if (cmp < 0) {
node.left = insert(node.left, value);;
// Insert node in right subtree.
} else {
node.right = insert(node.right, value);
}
// Update balance factor and height values.
update(node);
// Re-balance tree.
return balance(node);
}
// Update a node's height and balance factor.
private void update(Node node) {
int leftNodeHeight = (node.left == null) ? -1 : node.left.height;
int rightNodeHeight = (node.right == null) ? -1 : node.right.height;
// Update this node's height.
node.height = 1 + Math.max(leftNodeHeight, rightNodeHeight);
// Update balance factor.
node.bf = rightNodeHeight - leftNodeHeight;
}
// Re-balance a node if its balance factor is +2 or -2.
private Node balance(Node node) {
// Left heavy subtree.
if (node.bf == -2) {
// Left-Left case.
if (node.left.bf <= 0) {
return leftLeftCase(node);
// Left-Right case.
} else {
return leftRightCase(node);
}
// Right heavy subtree needs balancing.
} else if (node.bf == +2) {
// Right-Right case.
if (node.right.bf >= 0) {
return rightRightCase(node);
// Right-Left case.
} else {
return rightLeftCase(node);
}
}
// Node either has a balance factor of 0, +1 or -1 which is fine.
return node;
}
private Node leftLeftCase(Node node) {
return rightRotation(node);
}
private Node leftRightCase(Node node) {
node.left = leftRotation(node.left);
return leftLeftCase(node);
}
private Node rightRightCase(Node node) {
return leftRotation(node);
}
private Node rightLeftCase(Node node) {
node.right = rightRotation(node.right);
return rightRightCase(node);
}
private Node leftRotation(Node node) {
Node newParent = node.right;
node.right = newParent.left;
newParent.left = node;
update(node);
update(newParent);
return newParent;
}
private Node rightRotation(Node node) {
Node newParent = node.left;
node.left = newParent.right;
newParent.right = node;
update(node);
update(newParent);
return newParent;
}
// Remove a value from this binary tree if it exists, O(log(n))
public boolean remove(T elem) {
if (elem == null) return false;
if (contains(root, elem)) {
root = remove(root, elem);
nodeCount--;
return true;
}
return false;
}
// Removes a value from the AVL tree.
private Node remove(Node node, T elem) {
if (node == null) return null;
int cmp = elem.compareTo(node.value);
// Dig into left subtree, the value we're looking
// for is smaller than the current value.
if (cmp < 0) {
node.left = remove(node.left, elem);
// Dig into right subtree, the value we're looking
// for is greater than the current value.
} else if (cmp > 0) {
node.right = remove(node.right, elem);
// Found the node we wish to remove.
} else {
// This is the case with only a right subtree or no subtree at all.
// In this situation just swap the node we wish to remove
// with its right child.
if (node.left == null) {
return node.right;
// This is the case with only a left subtree or
// no subtree at all. In this situation just
// swap the node we wish to remove with its left child.
} else if (node.right == null) {
return node.left;
// When removing a node from a binary tree with two links the
// successor of the node being removed can either be the largest
// value in the left subtree or the smallest value in the right
// subtree. As a heuristic, I will remove from the subtree with
// the most nodes in hopes that this may help with balancing.
} else {
// Choose to remove from left subtree
if (node.left.height > node.right.height) {
// Swap the value of the successor into the node.
T successorValue = findMax(node.left);
node.value = successorValue;
// Find the largest node in the left subtree.
node.left = remove(node.left, successorValue);
} else {
// Swap the value of the successor into the node.
T successorValue = findMin(node.right);
node.value = successorValue;
// Go into the right subtree and remove the leftmost node we
// found and swapped data with. This prevents us from having
// two nodes in our tree with the same value.
node.right = remove(node.right, successorValue);
}
}
}
// Update balance factor and height values.
update(node);
// Re-balance tree.
return balance(node);
}
// Helper method to find the leftmost node (which has the smallest value)
private T findMin(Node node) {
while(node.left != null)
node = node.left;
return node.value;
}
// Helper method to find the rightmost node (which has the largest value)
private T findMax(Node node) {
while(node.right != null)
node = node.right;
return node.value;
}
// Returns as iterator to traverse the tree in order.
public java.util.Iterator<T> iterator () {
final int expectedNodeCount = nodeCount;
final java.util.Stack<Node> stack = new java.util.Stack<>();
stack.push(root);
return new java.util.Iterator<T> () {
Node trav = root;
@Override
public boolean hasNext() {
if (expectedNodeCount != nodeCount) throw new java.util.ConcurrentModificationException();
return root != null && !stack.isEmpty();
}
@Override
public T next () {
if (expectedNodeCount != nodeCount) throw new java.util.ConcurrentModificationException();
while(trav != null && trav.left != null) {
stack.push(trav.left);
trav = trav.left;
}
Node node = stack.pop();
if (node.right != null) {
stack.push(node.right);
trav = node.right;
}
return node.value;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
// Make sure all left child nodes are smaller in value than their parent and
// make sure all right child nodes are greater in value than their parent.
// (Used only for testing)
boolean validateBstInvarient(Node node) {
if (node == null) return true;
T val = node.value;
boolean isValid = true;
if (node.left != null) isValid = isValid && node.left.value.compareTo(val) < 0;
if (node.right != null) isValid = isValid && node.right.value.compareTo(val) > 0;
return isValid && validateBstInvarient(node.left) && validateBstInvarient(node.right);
}
// Example usage of AVL tree.
public static void main(String[] args) {
AVLTreeRecursive<Integer> tree = new AVLTreeRecursive<>();
tree.insert(7);
tree.insert(16);
tree.insert(-2);
tree.insert(10);
tree.insert(12);
// Prints: -2 7 10 12 16
for(Integer value : tree) System.out.print(value + " ");
System.out.println();
tree.remove(12);
tree.remove(-5);
tree.remove(10);
// Prints: -2 7 16
for(Integer value : tree) System.out.print(value + " ");
System.out.println();
System.out.println(tree.contains(10)); // false
System.out.println(tree.contains(16)); // true
}
}
Yet another Java implementation of AVL, with insert, search and delete.
It also prints out the parent name and height of each node when you do an in-order traversal, which makes it easy to see the effect of operations.
Out-of-the-box runnable code, should be especially helpful for CS students struggling with homework :-)
public class AVLTree {
private static class Node {
Node left, right;
Node parent;
int value ;
int height = 0;
public Node(int data, Node parent) {
this.value = data;
this.parent = parent;
}
@Override
public String toString() {
return value + " height " + height + " parent " + (parent == null ?
"NULL" : parent.value) + " | ";
}
void setLeftChild(Node child) {
if (child != null) {
child.parent = this;
}
this.left = child;
}
void setRightChild(Node child) {
if (child != null) {
child.parent = this;
}
this.right = child;
}
}
private Node root = null;
public void insert(int data) {
insert(root, data);
}
private int height(Node node) {
return node == null ? -1 : node.height;
}
private void insert(Node node, int value) {
if (root == null) {
root = new Node(value, null);
return;
}
if (value < node.value) {
if (node.left != null) {
insert(node.left, value);
} else {
node.left = new Node(value, node);
}
if (height(node.left) - height(node.right) == 2) { //left heavier
if (value < node.left.value) {
rotateRight(node);
} else {
rotateLeftThenRight(node);
}
}
} else if (value > node.value) {
if (node.right != null) {
insert(node.right, value);
} else {
node.right = new Node(value, node);
}
if (height(node.right) - height(node.left) == 2) { //right heavier
if (value > node.right.value)
rotateLeft(node);
else {
rotateRightThenLeft(node);
}
}
}
reHeight(node);
}
private void rotateRight(Node pivot) {
Node parent = pivot.parent;
Node leftChild = pivot.left;
Node rightChildOfLeftChild = leftChild.right;
pivot.setLeftChild(rightChildOfLeftChild);
leftChild.setRightChild(pivot);
if (parent == null) {
this.root = leftChild;
leftChild.parent = null;
return;
}
if (parent.left == pivot) {
parent.setLeftChild(leftChild);
} else {
parent.setRightChild(leftChild);
}
reHeight(pivot);
reHeight(leftChild);
}
private void rotateLeft(Node pivot) {
Node parent = pivot.parent;
Node rightChild = pivot.right;
Node leftChildOfRightChild = rightChild.left;
pivot.setRightChild(leftChildOfRightChild);
rightChild.setLeftChild(pivot);
if (parent == null) {
this.root = rightChild;
rightChild.parent = null;
return;
}
if (parent.left == pivot) {
parent.setLeftChild(rightChild);
} else {
parent.setRightChild(rightChild);
}
reHeight(pivot);
reHeight(rightChild);
}
private void reHeight(Node node) {
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
private void rotateLeftThenRight(Node node) {
rotateLeft(node.left);
rotateRight(node);
}
private void rotateRightThenLeft(Node node) {
rotateRight(node.right);
rotateLeft(node);
}
public boolean delete(int key) {
Node target = search(key);
if (target == null) return false;
target = deleteNode(target);
balanceTree(target.parent);
return true;
}
private Node deleteNode(Node target) {
if (isLeaf(target)) { //leaf
if (isLeftChild(target)) {
target.parent.left = null;
} else {
target.parent.right = null;
}
} else if (target.left == null ^ target.right == null) { //exact 1 child
Node nonNullChild = target.left == null ? target.right : target.left;
if (isLeftChild(target)) {
target.parent.setLeftChild(nonNullChild);
} else {
target.parent.setRightChild(nonNullChild);
}
} else {//2 children
Node immediatePredInOrder = immediatePredInOrder(target);
target.value = immediatePredInOrder.value;
target = deleteNode(immediatePredInOrder);
}
reHeight(target.parent);
return target;
}
private Node immediatePredInOrder(Node node) {
Node current = node.left;
while (current.right != null) {
current = current.right;
}
return current;
}
private boolean isLeftChild(Node child) {
return (child.parent.left == child);
}
private boolean isLeaf(Node node) {
return node.left == null && node.right == null;
}
private int calDifference(Node node) {
int rightHeight = height(node.right);
int leftHeight = height(node.left);
return rightHeight - leftHeight;
}
private void balanceTree(Node node) {
int difference = calDifference(node);
Node parent = node.parent;
if (difference == -2) {
if (height(node.left.left) >= height(node.left.right)) {
rotateRight(node);
} else {
rotateLeftThenRight(node);
}
} else if (difference == 2) {
if (height(node.right.right) >= height(node.right.left)) {
rotateLeft(node);
} else {
rotateRightThenLeft(node);
}
}
if (parent != null) {
balanceTree(parent);
}
reHeight(node);
}
public Node search(int key) {
return binarySearch(root, key);
}
private Node binarySearch(Node node, int key) {
if (node == null) return null;
if (key == node.value) {
return node;
}
if (key < node.value && node.left != null) {
return binarySearch(node.left, key);
}
if (key > node.value && node.right != null) {
return binarySearch(node.right, key);
}
return null;
}
public void traverseInOrder() {
System.out.println("ROOT " + root.toString());
inorder(root);
System.out.println();
}
private void inorder(Node node) {
if (node != null) {
inorder(node.left);
System.out.print(node.toString());
inorder(node.right);
}
}
public static void main(String[] args) {
AVLTree avl = new AVLTree();
avl.insert(1);
avl.traverseInOrder();
avl.insert(2);
avl.traverseInOrder();
avl.insert(3);
avl.traverseInOrder();
avl.insert(4);
avl.traverseInOrder();
avl.delete(1);
avl.traverseInOrder();
avl.insert(5);
avl.traverseInOrder();
avl.insert(6);
avl.traverseInOrder();
avl.delete(3);
avl.traverseInOrder();
avl.delete(5);
avl.traverseInOrder();
}
}
Well, This java code may help you, it extends a BST by Michael Goodrich:
To see complete data structure go here
AVLTree.java (Link is no longer available)
import java.util.Comparator;
/**
* AVLTree class - implements an AVL Tree by extending a binary
* search tree.
*
* @author Michael Goodrich, Roberto Tamassia, Eric Zamore
*/
//begin#fragment AVLTree
public class AVLTree extends BinarySearchTree implements Dictionary {
public AVLTree(Comparator c) { super(c); }
public AVLTree() { super(); }
/** Nested class for the nodes of an AVL tree. */
protected static class AVLNode extends BTNode {
protected int height; // we add a height field to a BTNode
AVLNode() {/* default constructor */}
/** Preferred constructor */
AVLNode(Object element, BTPosition parent,
BTPosition left, BTPosition right) {
super(element, parent, left, right);
height = 0;
if (left != null)
height = Math.max(height, 1 + ((AVLNode) left).getHeight());
if (right != null)
height = Math.max(height, 1 + ((AVLNode) right).getHeight());
} // we assume that the parent will revise its height if needed
public void setHeight(int h) { height = h; }
public int getHeight() { return height; }
}
/** Creates a new binary search tree node (overrides super's version). */
protected BTPosition createNode(Object element, BTPosition parent,
BTPosition left, BTPosition right) {
return new AVLNode(element,parent,left,right); // now use AVL nodes
}
/** Returns the height of a node (call back to an AVLNode). */
protected int height(Position p) {
return ((AVLNode) p).getHeight();
}
/** Sets the height of an internal node (call back to an AVLNode). */
protected void setHeight(Position p) { // called only if p is internal
((AVLNode) p).setHeight(1+Math.max(height(left(p)), height(right(p))));
}
/** Returns whether a node has balance factor between -1 and 1. */
protected boolean isBalanced(Position p) {
int bf = height(left(p)) - height(right(p));
return ((-1 <= bf) && (bf <= 1));
}
//end#fragment AVLTree
//begin#fragment AVLTree2
/** Returns a child of p with height no smaller than that of the other child */
//end#fragment AVLTree2
/**
* Return a child of p with height no smaller than that of the
* other child.
*/
//begin#fragment AVLTree2
protected Position tallerChild(Position p) {
if (height(left(p)) > height(right(p))) return left(p);
else if (height(left(p)) < height(right(p))) return right(p);
// equal height children - break tie using parent's type
if (isRoot(p)) return left(p);
if (p == left(parent(p))) return left(p);
else return right(p);
}
/**
* Rebalance method called by insert and remove. Traverses the path from
* zPos to the root. For each node encountered, we recompute its height
* and perform a trinode restructuring if it's unbalanced.
*/
protected void rebalance(Position zPos) {
if(isInternal(zPos))
setHeight(zPos);
while (!isRoot(zPos)) { // traverse up the tree towards the root
zPos = parent(zPos);
setHeight(zPos);
if (!isBalanced(zPos)) {
// perform a trinode restructuring at zPos's tallest grandchild
Position xPos = tallerChild(tallerChild(zPos));
zPos = restructure(xPos); // tri-node restructure (from parent class)
setHeight(left(zPos)); // recompute heights
setHeight(right(zPos));
setHeight(zPos);
}
}
}
// overridden methods of the dictionary ADT
//end#fragment AVLTree2
/**
* Inserts an item into the dictionary and returns the newly created
* entry.
*/
//begin#fragment AVLTree2
public Entry insert(Object k, Object v) throws InvalidKeyException {
Entry toReturn = super.insert(k, v); // calls our new createNode method
rebalance(actionPos); // rebalance up from the insertion position
return toReturn;
}
//end#fragment AVLTree2
/** Removes and returns an entry from the dictionary. */
//begin#fragment AVLTree2
public Entry remove(Entry ent) throws InvalidEntryException {
Entry toReturn = super.remove(ent);
if (toReturn != null) // we actually removed something
rebalance(actionPos); // rebalance up the tree
return toReturn;
}
} // end of AVLTree class
//end#fragment AVLTree2
BTNode.java
public class BTNode implements BTPosition {
private Object element; // element stored at this node
private BTPosition left, right, parent; // adjacent nodes
//end#fragment BTNode
/** Default constructor */
public BTNode() { }
//begin#fragment BTNode
/** Main constructor */
public BTNode(Object element, BTPosition parent,
BTPosition left, BTPosition right) {
setElement(element);
setParent(parent);
setLeft(left);
setRight(right);
}
public Object element() { return element; }
public void setElement(Object o) {
element=o;
}
public BTPosition getLeft() { return left; }
public void setLeft(BTPosition v) {
left=v;
}
public BTPosition getRight() { return right; }
public void setRight(BTPosition v) {
right=v;
}
public BTPosition getParent() { return parent; }
public void setParent(BTPosition v) {
parent=v;
}
}
BTPosition.java
public interface BTPosition extends Position { // inherits element()
public void setElement(Object o);
public BTPosition getLeft();
public void setLeft(BTPosition v);
public BTPosition getRight();
public void setRight(BTPosition v);
public BTPosition getParent();
public void setParent(BTPosition v);
}
精彩评论