I'm trying to parse domain names from the Message-ID field of an email that's been loaded from a file and compare it to the domain of the from field to see how well it matches up. Then I compare the distance using nltk.edit_distance()
.
I'm using
re.search('@[\[\]\w+\.]+',mail['Message-ID']).group()[1:]
but one spam message has the following
mail2['Message-ID']
'<2011315123.04C6DACE618A7C2763810@\x82\xb1\x82\xea\x82\xa9\x82\xe7\x8c\xa9\x82\xa6\x82\xe9\x82\xbe\x82\xeb\x82\xa4>开发者_如何学JAVA;'
So when I try and match that it doesn't return a match in group()
I can decode it in Shift_JIS, but don't know what to do with it from there
<2011315123.04C6DACE618A7C2763810@これから見えるだろう>
I don't want to try and check for every possible character encoding.
Any ideas of what I should do with it?
You can try the chardet project, which uses an algorithm to guess the character encoding:
import chardet
text = '<2011315123.04C6DACE618A7C2763810@\x82\xb1\x82\xea\x82\xa9\x82\xe7' + \
'\x8c\xa9\x82\xa6\x82\xe9\x82\xbe\x82\xeb\x82\xa4>'
cset = chardet.detect(text)
print cset
encoding = cset['encoding']
print encoding, text.decode(encoding)
Output:
{'confidence': 1, 'encoding': 'SHIFT_JIS'}
SHIFT_JIS <2011315123.04C6DACE618A7C2763810@これから見えるだろう>
精彩评论