I'm trying to memoize the following function:
gridwalk x y
| x == 0 = 1
| y == 0 = 1
| otherwise = (gridwalk (x - 1) y) + (gridwalk x (y - 1))
Looking at this I came up with the following solution:
gw :: (Int -> Int -> Int) -> Int -> Int -> Int
gw f x y
| x == 0 = 1
| y == 0 = 1
| otherwise = (f (x - 1) y) + (f x (y - 1))
gwlist :: [Int]
gwlist = map (\i -> gw fastgw (i `mod` 20) (i `div` 20)) [0..]
fastgw :: Int -> Int -> Int
fastgw x y = gwlist !! (x + y * 20)
Which I then can call like this:
gw fastgw 20 20
Is there an easier, more concise and general way (notice how I had to hardcode the max grid dimensions in the gwlist
function in order to convert from 2D to 1D space so I can access the memoizing list) to memo开发者_StackOverflow中文版ize functions with multiple parameters in Haskell?
You can use a list of lists to memoize the function result for both parameters:
memo :: (Int -> Int -> a) -> [[a]]
memo f = map (\x -> map (f x) [0..]) [0..]
gw :: Int -> Int -> Int
gw 0 _ = 1
gw _ 0 = 1
gw x y = (fastgw (x - 1) y) + (fastgw x (y - 1))
gwstore :: [[Int]]
gwstore = memo gw
fastgw :: Int -> Int -> Int
fastgw x y = gwstore !! x !! y
Use the data-memocombinators package from hackage. It provides easy to use memorization techniques and provides an easy and breve way to use them:
import Data.MemoCombinators (memo2,integral)
gridwalk = memo2 integral integral gridwalk' where
gridwalk' x y
| x == 0 = 1
| y == 0 = 1
| otherwise = (gridwalk (x - 1) y) + (gridwalk x (y - 1))
Here is a version using Data.MemoTrie
from the MemoTrie package to memoize the function:
import Data.MemoTrie(memo2)
gridwalk :: Int -> Int -> Int
gridwalk = memo2 gw
where
gw 0 _ = 1
gw _ 0 = 1
gw x y = gridwalk (x - 1) y + gridwalk x (y - 1)
If you want maximum generality, you can memoize a memoizing function.
memo :: (Num a, Enum a) => (a -> b) -> [b]
memo f = map f (enumFrom 0)
gwvals = fmap memo (memo gw)
fastgw :: Int -> Int -> Int
fastgw x y = gwvals !! x !! y
This technique will work with functions that have any number of arguments.
Edit: thanks to Philip K. for pointing out a bug in the original code. Originally memo
had a "Bounded" constraint instead of "Num" and began the enumeration at minBound
, which would only be valid for natural numbers.
Lists aren't a good data structure for memoizing, though, because they have linear lookup complexity. You might be better off with a Map or IntMap. Or look on Hackage.
Note that this particular code does rely on laziness, so if you wanted to switch to using a Map you would need to take a bounded amount of elements from the list, as in:
gwByMap :: Int -> Int -> Int -> Int -> Int
gwByMap maxX maxY x y = fromMaybe (gw x y) $ M.lookup (x,y) memomap
where
memomap = M.fromList $ concat [[((x',y'),z) | (y',z) <- zip [0..maxY] ys]
| (x',ys) <- zip [0..maxX] gwvals]
fastgw2 :: Int -> Int -> Int
fastgw2 = gwByMap 20 20
I think ghc may be stupid about sharing in this case, you may need to lift out the x
and y
parameters, like this:
gwByMap maxX maxY = \x y -> fromMaybe (gw x y) $ M.lookup (x,y) memomap
精彩评论