just now I had to dig through the website to find out why template class template member function was giving syntax errors:
开发者_开发百科template<class C> class F00 {
template<typename T> bar();
};
...
Foo<C> f;
f.bar<T>(); // syntax error here
I now realize that template brackets are treated as relational operators. To do what was intended the following bizarre syntax is needed, cf Templates: template function not playing well with class's template member function:
f.template bar<T>();
what other bizarre aspects and gotcha of C++/C++ templates you have encountered that were not something that you would consider to be common knowledge?
I got tripped up the first time I inherited a templated class from another templated class:
template<typename T>
class Base {
int a;
};
template<typename T>
class Derived : public Base<T> {
void func() {
a++; // error! 'a' has not been declared
}
};
The problem is that the compiler doesn't know if Base<T>
is going to be the default template or a specialized one. A specialized version may not have int a
as a member, so the compiler doesn't assume that it's available. But you can tell the compiler that it's going to be there with the using
directive:
template<typename T>
class Derived : public Base<T> {
using Base<T>::a;
void func() {
a++; // OK!
}
};
Alternatively, you can make it explicit that you are using a member of T
:
void func {
T::a++; // OK!
}
This one got me upset back then:
#include <vector>
using std::vector;
struct foo {
template<typename U>
void vector();
};
int main() {
foo f;
f.vector<int>(); // ambiguous!
}
The last line in main is ambiguous, because the compiler not only looks up vector
within foo
, but also as an unqualified name starting from within main
. So it finds both std::vector
and foo::vector
. To fix this, you have to write
f.foo::vector<int>();
GCC does not care about that, and accepts the above code by doing the intuitive thing (calling the member), other compilers do better and warn like comeau:
"ComeauTest.c", line 13: warning: ambiguous class member reference -- function
template "foo::vector" (declared at line 8) used in preference to
class template "std::vector" (declared at line 163 of
"stl_vector.h")
f.vector<int>(); // ambiguous!
The star of questions about templates here on SO: the missing typename!
template <typename T>
class vector
{
public:
typedef T * iterator;
...
};
template <typename T>
void func()
{
vector<T>::iterator it; // this is not correct!
typename vector<T>::iterator it2; // this is correct.
}
The problem here is that vector<T>::iterator
is a dependent name: it depends on a template parameter. As a consequence, the compiler does not know that iterator
designates a type; we need to tell him with the typename
keyword.
The same goes for template inner classes or template member/static functions: they must be disambiguated using the template
keyword, as noted in the OP.
template <typename T>
void func()
{
T::staticTemplateFunc<int>(); // ambiguous
T::template staticTemplateFunc<int>(); // ok
T t;
t.memberTemplateFunc<int>(); // ambiguous
t.template memberTemplateFunc<int>(); // ok
}
Out of scope class member function definition:
template <typename T>
class List { // a namespace scope class template
public:
template <typename T2> // a member function template
List (List<T2> const&); // (constructor)
…
};
template <typename T>
template <typename T2>
List<T>::List (List<T2> const& b) // an out-of-class member function
{ // template definition
…
}
精彩评论