I am trying to use CUBLAS to sum two big matrices of unknown size. I need a fully optimized code (if possible) so I chose not to rewrite the matrix addition code (simple) but using CUBLAS, in particular the cublasSgemm function which allows to sum A and C (if B is a unit matrix): *C = alpha*op(A)*op(B)+beta*c*
The problem is: C and C++ store开发者_C百科 the matrices in row-major format, cublasSgemm is intended (for fortran compatibility) to work in column-major format. You can specify whether A and B are to be transposed first, but you can NOT indicate to transpose C. So I'm unable to complete my matrix addition..
I can't transpose the C matrix by myself because the matrix is something like 20000x20000 maximum size.
Any idea on how to solve please?
cublasgeam has been added to CUBLAS5.0. It computes the weighted sum of 2 optionally transposed matrices
If you're just adding the matrices, it doesn't actually matter. You give it alpha, Aij, beta, and Cij. It thinks you're giving it alpha, Aji, beta, and Cji, and gives you what it thinks is Cji = beta Cji + alpha Aji. But that's the correct Cij as far as you're concerned. My worry is when you start going to things which do matter -- like matrix products. There, there's likely no working around it.
But more to the point, you don't want to be using GEMM to do matrix addition -- you're doing a completely pointless matrix multiplication (which takes takes ~20,0003 operations and many passes through memory) for an operatinon which should only require ~20,0002 operations and a single pass! Treat the matricies as 20,000^2-long vectors and use saxpy.
Matrix multiplication is memory-bandwidth intensive, so there is a huge (factors of 10x or 100x) difference in performance between coding it yourself and a tuned version. Ideally, you'd change structures in your code to match the library. If you can't, in this case you can manage just by using linear algebra identities. The C-vs-Fortran ordering means that when you pass in A, CUBLAS "sees" AT (A transpose). Which is fine, we can work around it. If what you want is C=A.B, pass in the matricies in the opposite order, B.A . Then the library sees (BT . AT), and calculates CT = (A.B)T; and then when it passes back CT, you get (in your ordering) C. Test it and see.
精彩评论