The WebGL Shader Language (GLSL) is a very powerful tool for multidimensional vector mathematics.
Is there any possibility to use that power from JavaScript (running in 开发者_运维问答web browser) for private non-3D calculations? Getting data in is possible, but is there any way to get data out to JavaScript after shader calculations are done?
No actual drawing is necessary, only calculating vectors. (I am toying with an idea of hardware accelerated gravity simulator written in JavaScript.)
Thank You!
In the news: Khronos seems to be developing WebCL which will be a JavaScript accessible version of OpenCL. That is exactly what I am looking for, but it will take some time...
As far as I can see from the spec WebGL supports framebuffer objects and read-back operations. This is sufficient for you to transform the data and get it back into client space. Here is a sequence of operations:
- Create FBO with attachment render buffers that you need to store the result; bind it
- Upload all input data into textures (the same size).
- Create the GLSL processing shader that will do the calculus inside the fragment part, reading the input from textures and writing the output into destination renderbuffers; bind it
- Draw a quad; read back the render buffers via
glReadPixels
.
Getting floats out of a shader in the browser is actually pretty easy, the constraint being 1 float per pixel though.
We convert 4 ints to 1 float (r: int, g: int, b: int, a: int) -> (rgba: float).
Thanks IEEE
float random(vec2 seed) {
return fract(cos(mod(123456780., 1024. * dot(seed / time, vec2(23.1406926327792690, 2.6651441426902251)))));
}
float shift_right(float v, float amt) {
v = floor(v) + 0.5; return floor(v / exp2(amt));
}
float shift_left(float v, float amt) {
return floor(v * exp2(amt) + 0.5);
}
float mask_last(float v, float bits) {
return mod(v, shift_left(1.0, bits));
}
float extract_bits(float num, float from, float to) {
from = floor(from + 0.5); to = floor(to + 0.5);
return mask_last(shift_right(num, from), to - from);
}
vec4 encode_float(float val) {
if (val == 0.0) return vec4(0, 0, 0, 0);
float sign = val > 0.0 ? 0.0 : 1.0;
val = abs(val);
float exponent = floor(log2(val));
float biased_exponent = exponent + 127.0;
float fraction = ((val / exp2(exponent)) - 1.0) * 8388608.0;
float t = biased_exponent / 2.0;
float last_bit_of_biased_exponent = fract(t) * 2.0;
float remaining_bits_of_biased_exponent = floor(t);
float byte4 = extract_bits(fraction, 0.0, 8.0) / 255.0;
float byte3 = extract_bits(fraction, 8.0, 16.0) / 255.0;
float byte2 = (last_bit_of_biased_exponent * 128.0 + extract_bits(fraction, 16.0, 23.0)) / 255.0;
float byte1 = (sign * 128.0 + remaining_bits_of_biased_exponent) / 255.0;
return vec4(byte4, byte3, byte2, byte1);
}
Usage:
Shader:
outputcolor = encode_float(420.420f);
JavaScript:
// convert output to floats
output = new Float32Array(output.buffer);
Yes, it's doable -- there's an old demo (might require some tweaks to get it to work on the 1.0 WebGL specification) by Aaron Babcock here.
精彩评论