Input
I have many numpy structured arrays in a list like this example:
import numpy
a1 = numpy.array([(1, 2), (3, 4), (5, 6)], dtype=[('x', int), ('y', int)])
a2 = numpy.array([(7,10), (8,11), (9,12)], dtype=[('z', int), ('w', float)])
arrays = [a1, a2]
Desired Output
What is the correct way to join them all together to create a unified structured array like the following?
desired_result = numpy.array([(1, 开发者_StackOverflow中文版2, 7, 10), (3, 4, 8, 11), (5, 6, 9, 12)],
dtype=[('x', int), ('y', int), ('z', int), ('w', float)])
Current Approach
This is what I'm currently using, but it is very slow, so I suspect there must be a more efficent way.
from numpy.lib.recfunctions import append_fields
def join_struct_arrays(arrays):
for array in arrays:
try:
result = append_fields(result, array.dtype.names, [array[name] for name in array.dtype.names], usemask=False)
except NameError:
result = array
return result
You can also use the function merge_arrays
of numpy.lib.recfunctions
:
import numpy.lib.recfunctions as rfn
rfn.merge_arrays(arrays, flatten = True, usemask = False)
Out[52]:
array([(1, 2, 7, 10.0), (3, 4, 8, 11.0), (5, 6, 9, 12.0)],
dtype=[('x', '<i4'), ('y', '<i4'), ('z', '<i4'), ('w', '<f8')])
Here is an implementation that should be faster. It converts everything to arrays of numpy.uint8
and does not use any temporaries.
def join_struct_arrays(arrays):
sizes = numpy.array([a.itemsize for a in arrays])
offsets = numpy.r_[0, sizes.cumsum()]
n = len(arrays[0])
joint = numpy.empty((n, offsets[-1]), dtype=numpy.uint8)
for a, size, offset in zip(arrays, sizes, offsets):
joint[:,offset:offset+size] = a.view(numpy.uint8).reshape(n,size)
dtype = sum((a.dtype.descr for a in arrays), [])
return joint.ravel().view(dtype)
Edit: Simplified the code and avoided the unnecessary as_strided()
.
and yet another way, a little more readable and also a lot faster I think:
def join_struct_arrays(arrays):
newdtype = []
for a in arrays:
descr = []
for field in a.dtype.names:
(typ, _) = a.dtype.fields[field]
descr.append((field, typ))
newdtype.extend(tuple(descr))
newrecarray = np.zeros(len(arrays[0]), dtype = newdtype)
for a in arrays:
for name in a.dtype.names:
newrecarray[name] = a[name]
return newrecarray
EDIT: with the suggestions of Sven it becomes (a little bit slower, but actually pretty readable):
def join_struct_arrays2(arrays):
newdtype = sum((a.dtype.descr for a in arrays), [])
newrecarray = np.empty(len(arrays[0]), dtype = newdtype)
for a in arrays:
for name in a.dtype.names:
newrecarray[name] = a[name]
return newrecarray
def join_struct_arrays(*arrs):
dtype = [(name, d[0]) for arr in arrs for name, d in arr.dtype.fields.items()]
r = np.empty(arrs[0].shape, dtype=dtype)
for a in arrs:
for name in a.dtype.names:
r[name] = a[name]
return r
精彩评论