I'm looking for some 1D problems in CUDA and HPC, e.g. Black Scholes.
By 1D problems, I mean problems in which all the work is done on 1D arrays. Although matrix multiplication can be expressed in this way, I want problems in which the basic problem is just 1D.
I a开发者_Python百科m trying to develop a 1D library for CUDA and would need some benchmark problems to test it. I realize that a lot of real world problems are expressed as 2D, I would really like to see some real world 1D problems.
Thanks.
EDIT: Thanks for all the answers. It'll be great if the answers contain more HPC problems, e.g. Black Scholes, rather than just generic algorithms. Thanks.
A common problem in parallel programing is a reduction: You are given an array of numbers and you have to compute a "prefix sum", that is, every element stores a sum of all preceidings elements (+ itself or not. I prefer inclusive).
It is fairly simple problem, but since it is often repeated many times in more complex algorithms, having that efficient is cruicial.
Another common problem is sorting.
There already some papers on that topic, take this one for example:
enter link description here
I think it is a good problem to start with, to solve bigger problems on top of it.
A simple problem you can use for 1 to 3 dimensions is the heat equation. There are several different numerical methods for solving it, some of them can be implementes in parallel.
A method that works at least with OpenMp and MPI is the finite difference method. I suppose if you combine it with a clever stencil you should be able to implement it efficently in Cuda C.
A classical 1D example is provided by the heat equation.
Below, I'm posting a concrete, fully worked CPU/GPU example on this topic exploiting the Jacobi solution scheme. Please, note that two time-step kernels are provided, one not using shared memory and one using shared memory.
#include <stdio.h>
#include <stdlib.h>
#include <thrust\device_vector.h>
#include "Utilities.cuh"
#define BLOCKSIZE 512
/****************************/
/* CPU CALCULATION FUNCTION */
/****************************/
void HeatEquation1DCPU(float * __restrict__ h_T, int *Niter, const float T0, const float Q_N_1, const float dx, const float k, const float rho,
const float cp, const float alpha, const float dt, const float maxErr, const int maxIterNumber, const int N)
{
float *h_DeltaT = (float *)malloc(N * sizeof(float));
// --- Enforcing boundary condition at the left end.
*h_T = T0;
h_DeltaT[0] = 0.f;
float current_max;
do {
// --- Internal region between the two boundaries.
for (int i = 1; i < N - 1; i++) h_DeltaT[i] = dt * alpha * ((h_T[i - 1] + h_T[i + 1] - 2.f * h_T[i]) / (dx * dx));
// --- Enforcing boundary condition at the right end.
h_DeltaT[N - 1] = dt * 2.f * ((k * ((h_T[N - 2] - h_T[N - 1]) / dx) + Q_N_1) / (dx * rho * cp));
// --- Update the temperature and find the maximum DeltaT over all nodes
current_max = h_DeltaT[0]; // --- Remember: h_DeltaT[0] = 0
for (int i = 1; i < N; i++)
{
h_T[i] = h_T[i] + h_DeltaT[i]; // h_T[0] keeps
current_max = abs(h_DeltaT[i]) > current_max ? abs(h_DeltaT[i]) : current_max;
}
// --- Increase iteration counter
(*Niter)++;
} while (*Niter < maxIterNumber && current_max > maxErr);
delete [] h_DeltaT;
}
/**************************/
/* GPU CALCULATION KERNEL */
/**************************/
__global__ void HeatEquation1DGPU_IterationKernel(float * __restrict__ d_T, float * __restrict__ d_DeltaT, const float T0, const float Q_N_1, const float dx, const float k, const float rho,
const float cp, const float alpha, const float dt, const float maxErr, const int maxIterNumber, const int N)
{
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < N) {
// --- Internal region between the two boundaries.
if ((tid > 0) && (tid < N - 1) ) d_DeltaT[tid] = dt * alpha *((d_T[tid - 1] + d_T[tid + 1] - 2.f * d_T[tid]) / (dx * dx));
// --- Enforcing boundary condition at the left end.
if (tid == 0) d_DeltaT[0] = 0.f;
// --- Enforcing boundary condition at the right end.
if (tid == N - 1) d_DeltaT[tid] = dt * 2.f * ((k * ((d_T[tid - 1] - d_T[tid]) / dx) + Q_N_1) / (dx * rho * cp));
// --- Update the temperature
d_T[tid] = d_T[tid] + d_DeltaT[tid];
d_DeltaT[tid] = abs(d_DeltaT[tid]);
}
}
__global__ void HeatEquation1DGPU_IterationSharedKernel(float * __restrict__ d_T, float * __restrict__ d_DeltaT, const float T0, const float Q_N_1, const float dx, const float k, const float rho,
const float cp, const float alpha, const float dt, const float maxErr, const int maxIterNumber, const int N)
{
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
// --- Shared memory has 0, 1, ..., BLOCKSIZE - 1, BLOCKSIZE locations, so it has BLOCKSIZE locations + 2 (left and right) halo cells.
__shared__ float d_T_shared[BLOCKSIZE + 2]; // --- Need to know BLOCKSIZE beforehand
if (tid < N) {
// --- Load data from global memory to shared memory locations 1, 2, ..., BLOCKSIZE - 1
d_T_shared[threadIdx.x + 1] = d_T[tid];
// --- Left halo cell
if ((threadIdx.x == 0) && (tid > 0)) { d_T_shared[0] = d_T[tid - 1]; }
// --- Right halo cell
if ((threadIdx.x == blockDim.x - 1) && (tid < N - 1)) { d_T_shared[threadIdx.x + 2] = d_T[tid + 1]; }
__syncthreads();
// --- Internal region between the two boundaries.
if ((tid > 0) && (tid < N - 1) ) d_DeltaT[tid] = dt * alpha *((d_T_shared[threadIdx.x] + d_T_shared[threadIdx.x + 2] - 2.f * d_T_shared[threadIdx.x + 1]) / (dx * dx));
// --- Enforcing boundary condition at the left end.
if (tid == 0) d_DeltaT[0] = 0.f;
// --- Enforcing boundary condition at the right end.
if (tid == N - 1) d_DeltaT[tid] = dt * 2.f * ((k * ((d_T_shared[threadIdx.x] - d_T_shared[threadIdx.x + 1]) / dx) + Q_N_1) / (dx * rho * cp));
// --- Update the temperature
d_T[tid] = d_T[tid] + d_DeltaT[tid];
d_DeltaT[tid] = abs(d_DeltaT[tid]);
}
}
/****************************/
/* GPU CALCULATION FUNCTION */
/****************************/
void HeatEquation1DGPU(float * __restrict__ d_T, int *Niter, const float T0, const float Q_N_1, const float dx, const float k, const float rho,
const float cp, const float alpha, const float dt, const float maxErr, const int maxIterNumber, const int N)
{
// --- Absolute values of DeltaT
float *d_DeltaT; gpuErrchk(cudaMalloc(&d_DeltaT, N * sizeof(float)));
// --- Enforcing boundary condition at the left end.
gpuErrchk(cudaMemcpy(d_T, &T0, sizeof(float), cudaMemcpyHostToDevice));
float current_max = 0.f;
do {
//HeatEquation1DGPU_IterationKernel<<<iDivUp(N, BLOCKSIZE), BLOCKSIZE>>>(d_T, d_DeltaT, T0, Q_N_1, dx, k, rho, cp, alpha, dt, maxErr, maxIterNumber, N);
HeatEquation1DGPU_IterationSharedKernel<<<iDivUp(N, BLOCKSIZE), BLOCKSIZE>>>(d_T, d_DeltaT, T0, Q_N_1, dx, k, rho, cp, alpha, dt, maxErr, maxIterNumber, N);
thrust::device_ptr<float> d = thrust::device_pointer_cast(d_DeltaT);
current_max = thrust::reduce(d, d + N, current_max, thrust::maximum<float>());
// --- Increase iteration counter
(*Niter)++;
} while (*Niter < maxIterNumber && current_max > maxErr);
gpuErrchk(cudaFree(d_DeltaT));
}
/********/
/* MAIN */
/********/
int main()
{
// --- See https://en.wikipedia.org/wiki/Thermal_diffusivity
// --- Parameters of the problem
const float k = 0.19f; // --- Thermal conductivity [W / (m * K)]
const float rho = 930.f; // --- Density [kg / m^3]
const float cp = 1340.f; // --- Specific heat capacity [J / (kg * K)]
const float alpha = k / (rho * cp); // --- Thermal diffusivity [m^2 / s]
const float length = 1.6f; // --- Total length of the domain [m]
const int N = 64 * BLOCKSIZE; // --- Number of grid points
const float dx = (length / (float)(N - 1));// --- Discretization step [m]
const float dt = (float)(dx * dx / (4.f * alpha));
// --- Time step [s]
const float T0 = 0.f; // --- Temperature at the first end of the domain [C]
const float Q_N_1 = 10.f; // --- Heat flux at the second end of the domain [W / m^2]
const float maxErr = 1.0e-5f; // --- Maximum admitted DeltaT
const int maxIterNumber = 10.0 / dt; // --- Number of overall time steps
/********************/
/* GPU CALCULATIONS */
/********************/
float *h_T_final_device = (float *)malloc(N * sizeof(float)); // --- Final "host-side" result of GPU calculations
int Niter_GPU = 0; // --- Iteration counter for GPU calculations
// --- Device temperature allocation and initialization
float *d_T; gpuErrchk(cudaMalloc(&d_T, N * sizeof(float)));
gpuErrchk(cudaMemset(d_T, 0, N * sizeof(float)));
// --- GPU calculations
HeatEquation1DGPU(d_T, &Niter_GPU, T0, Q_N_1, dx, k, rho, cp, alpha, dt, maxErr, maxIterNumber, N);
// --- Transfer the GPU calculation results from device to host
gpuErrchk(cudaMemcpy(h_T_final_device, d_T, N * sizeof(float), cudaMemcpyDeviceToHost));
/********************/
/* CPU CALCULATIONS */
/********************/
// --- Host temperature allocation and initialization
float *h_T_final_host = (float *)malloc(N * sizeof(float));
memset(h_T_final_host, 0, N * sizeof(float));
int Niter_CPU = 0;
HeatEquation1DCPU(h_T_final_host, &Niter_CPU, T0, Q_N_1, dx, k, rho, cp, alpha, dt, maxErr, maxIterNumber, N);
/************************/
/* CHECKING THE RESULTS */
/************************/
for (int i = 0; i < N; i++) {
printf("Node = %i; T_host = %3.10f; T_device = %3.10f\n", i, h_T_final_host[i], h_T_final_device[i]);
if (h_T_final_host[i] != h_T_final_device[i]) {
printf("Error at i = %i; T_host = %f; T_device = %f\n", i, h_T_final_host[i], h_T_final_device[i]);
return 0;
}
}
printf("Test passed!\n");
delete [] h_T_final_device;
gpuErrchk(cudaFree(d_T));
return 0;
}
Reduction (finding min, max or sum of array) and Sorting are best examples of 1D problems. There can be many variables of these algorithms like sorting on structures etc
精彩评论