I need to convert arbitrary triangulated 3D mesh to cloud of particles that are uniformly spaced. First thought was to try find a way to fill one 3D triangle. And then fill each triangle of mesh, removing duplicated particles on edges, but that's just hard and too much work. I was hoping for some more-math way.
Can anyone point me to an algorithm which can 开发者_高级运维help me do my task correctly... well, at least approximatively?
Thanks
There are two main options:
Voxelization of mesh. Easy to implement the conversion of mesh to voxels, but it's inaccurate since uniform spacing cannot be achieved: distance between cubes can be x, x*sqrt(2) or x*sqrt(3) depending if neighbor cubes are in same plane and adjacent.
Poisson disk sampling on surface. Hard to implement and lack of research material and code, but mathematically very correct. Some links:
http://research.microsoft.com/apps/pubs/default.aspx?id=135760
http://web.mysites.ntu.edu.sg/cwfu/public/Shared%20Documents/dualtiling/index.html
You could convert the TIN to raster using a GIS package or software such as R, then retrieve one point at the center of each pixel representing the value. (Example in ArcGIS)
EDIT: If the irregular 3D mesh has multiple heights per {x, y} a similar approach would be to sample the mesh using a voxel "grid" and keep one value per voxel. GRASS GIS has the functionality to take the vertices of the TIN (3d mesh) and convert them to voxels, then back to a regular 3d cloud.
精彩评论