I need to make a program in pyth开发者_JAVA百科on that chooses cars from an array, that is filled with the mass of 10 cars. The idea is that it fills a barge, that can hold ~8 tonnes most effectively and minimum space is left unfilled. My idea is, that it makes variations of the masses and chooses one, that is closest to the max weight. But since I'm new to algorithms, I don't have a clue how to do it
I'd solve this exercise with dynamic programming. You should be able to get the optimal solution in O(m*n) operations (n beeing the number of cars, m beeing the total mass). That will only work however if the masses are all integers.
In general you have a binary linear programming problem. Those are very hard in general (NP-complete).
However, both ways lead to algorithms which I wouldn't consider to be beginners material. You might be better of with trial and error (as you suggested) or simply try every possible combination.
This is a 1D bin-packing problem. It's a NP problem and there isn't an optimal solution. However there is a way to solve this with greedy algorithm. Most likely you want to try my bin-packing solver at phpclasses.org (bin-packing).
If I have a graph unweigthed and undirected and each node is connected which each node then I have (n^2-n)/2 pairs of node and overall n^2-n possibilities/combinations:
1,2,3,4,5,...,64
2,1,X,X,X,...,X
3,X,1,X,X,...,X
4,X,X,1,X,...,X
5,X,X,X,1,...,X
.,X,X,X,X,1,.,X
.,X,X,X,X,X,1,X
64,X,X,X,X,X,X,1
Isn't this the same with 10 cars? (45 pairs of cars and 90 combinations/possibilites). Did I forgot something? Where is the error?
A problem like you have here is similar to the classic traveling salesman problem, which asks for the most efficient way for a salesman to visit a list of cities. The difference is that it is conceivable that you might not need every car to fill the barge, whereas the salesman must visit every city. But the problem is similar. The brute-force way to solve the problem is to investigate every possible combination of cars, from 1 car to all 10. We will assume that it is valid to have any number of each car (i.e. if car 2 is a Ford Focus, you could have three Ford Foci). This is easy to change if the car list is an exact list of specific cars, however, and you can use only 1 of each.
Now, this quickly begins to consume a lot of time. As the number of cars goes up, the number of possible combinations of cars goes up geometrically, which means that with a number smaller than you expect, it will take longer to run the program then there is time left in your life. 10 should be manageable, though (it turns out to be a little more than 700,000 combinations, or 1024 if you can only have one of each item).
The first thing is to define the weight of each car and the maximum weight the barge can carry.
weights = [1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 2]
capacity = 8
Now we need some way to find each possible combination. Python's itertools
module has a function that will give us every combination of a given length, but we want all lengths. So we will write one loop that goes from 1 to 10 and calls itertools.combinations_with_replacement
for each length. We can then find out the total weight of each combination, and if it is higher than any weight we have already found, yet still within capacity, we will remember it as the best we have found so far.
The only real trick here is that we don't want combinations of the weights -- we want combinations of the indexes of the weights, because at the end we want to know which cars to put on the barge, not their weights. So combinations_with_replacements(range(10), ...)
rather than combinations_with_replacements(weights, ...)
. Inside the loop you will want to get the weight of each car in the combination with weights[i]
to sum it up.
I originally had code here, but took it out since this is homework. :-) (It wasn't originally tagged as such, but I should have known -- I blame the time change.)
If you wanted to allow only one of each car, you'd use itertools.combinations
instead of combinations_with_replacement
.
A shortcut is possible since you mention elsewhere that cars weigh from 1-2 tonnes. This means that you know you will need at least 4 of them (4 * 2 = 8), so you can skip all the combinations of 1-3 cars. However, this wouldn't generalize well if the prof changed the parameters on you.
精彩评论