I am aware that in C you can't implicitly convert, for instance, char**
to const char**
(c.f. C-Faq, SO question 1, SO Question 2).
On the other hand, if I see a function declared like so:
void foo(char** ppData);
I must assume the function may change the data passed in. Therefore, if I am writing a function that will not change the data, it is better, in my opinion, to declare:
void foo(const char** ppData);
or even:
void foo(const char * const * ppData);
But that puts the users of the function in an awkward position. They might have:
int main(int argc, char** argv)
{
foo(argv); // Oh no, compiler error (or warning)
...
}
And in order to cleanly call my function, they would need to insert a cast.
I come from a mostly C++ background, where this is less of an issue due to C++'s more in-depth const rules.
What is the idiomat开发者_开发技巧ic solution in C?
Declare foo as taking a
char**
, and just document the fact that it won't change its inputs? That seems a bit gross, esp. since it punishes users who might have aconst char**
that they want to pass it (now they have to cast away const-ness)Force users to cast their input, adding const-ness.
Something else?
Although you already have accepted an answer, I'd like to go for 3) namely macros. You can write these in a way that the user of your function will just write a call foo(x);
where x can be const
-qualified or not. The idea would to have one macro CASTIT
that does the cast and checks if the argument is of a valid type, and another that is the user interface:
void totoFunc(char const*const* x);
#define CASTIT(T, X) ( \
(void)sizeof((T const*){ (X)[0] }), \
(T const*const*)(X) \
)
#define toto(X) totoFunc(CASTIT(char, X))
int main(void) {
char * * a0 = 0;
char const* * b0 = 0;
char *const* c0 = 0;
char const*const* d0 = 0;
int * * a1 = 0;
int const* * b1 = 0;
int *const* c1 = 0;
int const*const* d1 = 0;
toto(a0);
toto(b0);
toto(c0);
toto(d0);
toto(a1); // warning: initialization from incompatible pointer type
toto(b1); // warning: initialization from incompatible pointer type
toto(c1); // warning: initialization from incompatible pointer type
toto(d1); // warning: initialization from incompatible pointer type
}
The CASTIT
macro looks a bit complicated, but all it does is to first check if X[0]
is assignment compatible with char const*
. It uses a compound literal for that. This then is hidden inside a sizeof
to ensure that actually the compound literal is never created and also that X
is not evaluated by that test.
Then follows a plain cast, but which by itself would be too dangerous.
As you can see by the examples in the main
this exactly detects the erroneous cases.
A lot of that stuff is possible with macros. I recently cooked up a complicated example with const
-qualified arrays.
2 is better than 1. 1 is pretty common though, since huge volumes of C code don't use const at all. So if you're writing new code for a new system, use 2. If you're writing maintenance code for an existing system where const is a rarity, use 1.
Go with option 2. Option 1 has the disadvantage that you mentioned and is less type-safe.
If I saw a function that takes a char **
argument and I've got a char *const *
or similar, I'd make a copy and pass that, just in case.
Modern (C11+) way using _Generic
to preserve type-safety and function pointers:
// joins an array of words into a new string;
// mutates neither *words nor **words
char *join_words (const char *const words[])
{
// ...
}
#define join_words(words) join_words(_Generic((words),\
char ** : (const char *const *)(words),\
char *const * : (const char *const *)(words),\
default : (words)\
))
// usage :
int main (void)
{
const char *const words_1[] = {"foo", "bar", NULL};
char *const words_2[] = {"foo", "bar", NULL};
const char *words_3[] = {"foo", "bar", NULL};
char *words_4[] = {"foo", "bar", NULL};
// none of the calls generate warnings:
join_words(words_1);
join_words(words_2);
join_words(words_3);
join_words(words_4);
// type-checking is preserved:
const int *const numbers[] = { (int[]){1, 2}, (int[]){3, 4}, NULL };
join_words(numbers);
// warning: incompatible pointer types passing
// 'const int *const [2]' to parameter of type 'const char *const *'
// since the macro is defined after the function's declaration and has the same name,
// we can also get a pointer to the function
char *(*funcptr) (const char *const *) = join_words;
}
精彩评论