When compiling a program I wrote on Mac OS X after installing the necessary libraries through MacPorts, I get this error:
In function 'nanotime':
error: 'CLOCK_REALTIME' undeclared (first use in this function)
error: (Each undeclared identifier is reported only once
error: f开发者_StackOverflowor each function it appears in.)
It appears that clock_gettime
is not implemented in Mac OS X. Is there an alternative means of getting the epoch time in nanoseconds? Unfortunately gettimeofday
is in microseconds.
After hours of perusing different answers, blogs, and headers, I found a portable way to get the current time:
#include <time.h>
#include <sys/time.h>
#ifdef __MACH__
#include <mach/clock.h>
#include <mach/mach.h>
#endif
struct timespec ts;
#ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
clock_serv_t cclock;
mach_timespec_t mts;
host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
ts.tv_sec = mts.tv_sec;
ts.tv_nsec = mts.tv_nsec;
#else
clock_gettime(CLOCK_REALTIME, &ts);
#endif
or check out this gist: https://gist.github.com/1087739
Hope this saves someone time. Cheers!
None of the solutions above answers the question. Either they don't give you absolute Unix time, or their accuracy is 1 microsecond. The most popular solution by jbenet is slow (~6000ns) and does not count in nanoseconds even though its return suggests so. Below is a test for 2 solutions suggested by jbenet and Dmitri B, plus my take on this. You can run the code without changes.
The 3rd solution does count in nanoseconds and gives you absolute Unix time reasonably fast (~90ns). So if someone find it useful - please let us all know here :-). I will stick to the one from Dmitri B (solution #1 in the code) - it fits my needs better.
I needed commercial quality alternative to clock_gettime() to make pthread_…timed.. calls, and found this discussion very helpful. Thanks guys.
/*
Ratings of alternatives to clock_gettime() to use with pthread timed waits:
Solution 1 "gettimeofday":
Complexity : simple
Portability : POSIX 1
timespec : easy to convert from timeval to timespec
granularity : 1000 ns,
call : 120 ns,
Rating : the best.
Solution 2 "host_get_clock_service, clock_get_time":
Complexity : simple (error handling?)
Portability : Mac specific (is it always available?)
timespec : yes (struct timespec return)
granularity : 1000 ns (don't be fooled by timespec format)
call time : 6000 ns
Rating : the worst.
Solution 3 "mach_absolute_time + gettimeofday once":
Complexity : simple..average (requires initialisation)
Portability : Mac specific. Always available
timespec : system clock can be converted to timespec without float-math
granularity : 1 ns.
call time : 90 ns unoptimised.
Rating : not bad, but do we really need nanoseconds timeout?
References:
- OS X is UNIX System 3 [U03] certified
http://www.opengroup.org/homepage-items/c987.html
- UNIX System 3 <--> POSIX 1 <--> IEEE Std 1003.1-1988
http://en.wikipedia.org/wiki/POSIX
http://www.unix.org/version3/
- gettimeofday() is mandatory on U03,
clock_..() functions are optional on U03,
clock_..() are part of POSIX Realtime extensions
http://www.unix.org/version3/inttables.pdf
- clock_gettime() is not available on MacMini OS X
(Xcode > Preferences > Downloads > Command Line Tools = Installed)
- OS X recommends to use gettimeofday to calculate values for timespec
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man3/pthread_cond_timedwait.3.html
- timeval holds microseconds, timespec - nanoseconds
http://www.gnu.org/software/libc/manual/html_node/Elapsed-Time.html
- microtime() is used by kernel to implement gettimeofday()
http://ftp.tw.freebsd.org/pub/branches/7.0-stable/src/sys/kern/kern_time.c
- mach_absolute_time() is really fast
http://www.opensource.apple.com/source/Libc/Libc-320.1.3/i386/mach/mach_absolute_time.c
- Only 9 deciaml digits have meaning when int nanoseconds converted to double seconds
Tutorial: Performance and Time post uses .12 precision for nanoseconds
http://www.macresearch.org/tutorial_performance_and_time
Example:
Three ways to prepare absolute time 1500 milliseconds in the future to use with pthread timed functions.
Output, N = 3, stock MacMini, OSX 10.7.5, 2.3GHz i5, 2GB 1333MHz DDR3:
inittime.tv_sec = 1390659993
inittime.tv_nsec = 361539000
initclock = 76672695144136
get_abs_future_time_0() : 1390659994.861599000
get_abs_future_time_0() : 1390659994.861599000
get_abs_future_time_0() : 1390659994.861599000
get_abs_future_time_1() : 1390659994.861618000
get_abs_future_time_1() : 1390659994.861634000
get_abs_future_time_1() : 1390659994.861642000
get_abs_future_time_2() : 1390659994.861643671
get_abs_future_time_2() : 1390659994.861643877
get_abs_future_time_2() : 1390659994.861643972
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h> /* gettimeofday */
#include <mach/mach_time.h> /* mach_absolute_time */
#include <mach/mach.h> /* host_get_clock_service, mach_... */
#include <mach/clock.h> /* clock_get_time */
#define BILLION 1000000000L
#define MILLION 1000000L
#define NORMALISE_TIMESPEC( ts, uint_milli ) \
do { \
ts.tv_sec += uint_milli / 1000u; \
ts.tv_nsec += (uint_milli % 1000u) * MILLION; \
ts.tv_sec += ts.tv_nsec / BILLION; \
ts.tv_nsec = ts.tv_nsec % BILLION; \
} while (0)
static mach_timebase_info_data_t timebase = { 0, 0 }; /* numer = 0, denom = 0 */
static struct timespec inittime = { 0, 0 }; /* nanoseconds since 1-Jan-1970 to init() */
static uint64_t initclock; /* ticks since boot to init() */
void init()
{
struct timeval micro; /* microseconds since 1 Jan 1970 */
if (mach_timebase_info(&timebase) != 0)
abort(); /* very unlikely error */
if (gettimeofday(µ, NULL) != 0)
abort(); /* very unlikely error */
initclock = mach_absolute_time();
inittime.tv_sec = micro.tv_sec;
inittime.tv_nsec = micro.tv_usec * 1000;
printf("\tinittime.tv_sec = %ld\n", inittime.tv_sec);
printf("\tinittime.tv_nsec = %ld\n", inittime.tv_nsec);
printf("\tinitclock = %ld\n", (long)initclock);
}
/*
* Get absolute future time for pthread timed calls
* Solution 1: microseconds granularity
*/
struct timespec get_abs_future_time_coarse(unsigned milli)
{
struct timespec future; /* ns since 1 Jan 1970 to 1500 ms in the future */
struct timeval micro = {0, 0}; /* 1 Jan 1970 */
(void) gettimeofday(µ, NULL);
future.tv_sec = micro.tv_sec;
future.tv_nsec = micro.tv_usec * 1000;
NORMALISE_TIMESPEC( future, milli );
return future;
}
/*
* Solution 2: via clock service
*/
struct timespec get_abs_future_time_served(unsigned milli)
{
struct timespec future;
clock_serv_t cclock;
mach_timespec_t mts;
host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
future.tv_sec = mts.tv_sec;
future.tv_nsec = mts.tv_nsec;
NORMALISE_TIMESPEC( future, milli );
return future;
}
/*
* Solution 3: nanosecond granularity
*/
struct timespec get_abs_future_time_fine(unsigned milli)
{
struct timespec future; /* ns since 1 Jan 1970 to 1500 ms in future */
uint64_t clock; /* ticks since init */
uint64_t nano; /* nanoseconds since init */
clock = mach_absolute_time() - initclock;
nano = clock * (uint64_t)timebase.numer / (uint64_t)timebase.denom;
future = inittime;
future.tv_sec += nano / BILLION;
future.tv_nsec += nano % BILLION;
NORMALISE_TIMESPEC( future, milli );
return future;
}
#define N 3
int main()
{
int i, j;
struct timespec time[3][N];
struct timespec (*get_abs_future_time[])(unsigned milli) =
{
&get_abs_future_time_coarse,
&get_abs_future_time_served,
&get_abs_future_time_fine
};
init();
for (j = 0; j < 3; j++)
for (i = 0; i < N; i++)
time[j][i] = get_abs_future_time[j](1500); /* now() + 1500 ms */
for (j = 0; j < 3; j++)
for (i = 0; i < N; i++)
printf("get_abs_future_time_%d() : %10ld.%09ld\n",
j, time[j][i].tv_sec, time[j][i].tv_nsec);
return 0;
}
In effect, it seems not to be implemented for macOS before Sierra 10.12. You may want to look at this blog entry. The main idea is in the following code snippet:
#include <mach/mach_time.h>
#define ORWL_NANO (+1.0E-9)
#define ORWL_GIGA UINT64_C(1000000000)
static double orwl_timebase = 0.0;
static uint64_t orwl_timestart = 0;
struct timespec orwl_gettime(void) {
// be more careful in a multithreaded environement
if (!orwl_timestart) {
mach_timebase_info_data_t tb = { 0 };
mach_timebase_info(&tb);
orwl_timebase = tb.numer;
orwl_timebase /= tb.denom;
orwl_timestart = mach_absolute_time();
}
struct timespec t;
double diff = (mach_absolute_time() - orwl_timestart) * orwl_timebase;
t.tv_sec = diff * ORWL_NANO;
t.tv_nsec = diff - (t.tv_sec * ORWL_GIGA);
return t;
}
#if defined(__MACH__) && !defined(CLOCK_REALTIME)
#include <sys/time.h>
#define CLOCK_REALTIME 0
// clock_gettime is not implemented on older versions of OS X (< 10.12).
// If implemented, CLOCK_REALTIME will have already been defined.
int clock_gettime(int /*clk_id*/, struct timespec* t) {
struct timeval now;
int rv = gettimeofday(&now, NULL);
if (rv) return rv;
t->tv_sec = now.tv_sec;
t->tv_nsec = now.tv_usec * 1000;
return 0;
}
#endif
Everything you need is described in Technical Q&A QA1398: Technical Q&A QA1398: Mach Absolute Time Units, basically the function you want is mach_absolute_time
.
Here's a slightly earlier version of the sample code from that page that does everything using Mach calls (the current version uses AbsoluteToNanoseconds
from CoreServices). In current OS X (i.e., on Snow Leopard on x86_64) the absolute time values are actually in nanoseconds and so don't actually require any conversion at all. So, if you're good and writing portable code, you'll convert, but if you're just doing something quick and dirty for yourself, you needn't bother.
FWIW, mach_absolute_time
is really fast.
uint64_t GetPIDTimeInNanoseconds(void)
{
uint64_t start;
uint64_t end;
uint64_t elapsed;
uint64_t elapsedNano;
static mach_timebase_info_data_t sTimebaseInfo;
// Start the clock.
start = mach_absolute_time();
// Call getpid. This will produce inaccurate results because
// we're only making a single system call. For more accurate
// results you should call getpid multiple times and average
// the results.
(void) getpid();
// Stop the clock.
end = mach_absolute_time();
// Calculate the duration.
elapsed = end - start;
// Convert to nanoseconds.
// If this is the first time we've run, get the timebase.
// We can use denom == 0 to indicate that sTimebaseInfo is
// uninitialised because it makes no sense to have a zero
// denominator is a fraction.
if ( sTimebaseInfo.denom == 0 ) {
(void) mach_timebase_info(&sTimebaseInfo);
}
// Do the maths. We hope that the multiplication doesn't
// overflow; the price you pay for working in fixed point.
elapsedNano = elapsed * sTimebaseInfo.numer / sTimebaseInfo.denom;
printf("multiplier %u / %u\n", sTimebaseInfo.numer, sTimebaseInfo.denom);
return elapsedNano;
}
Note that macOS Sierra 10.12 now supports clock_gettime():
#include <stdio.h>
#include <time.h>
int main() {
struct timespec res;
struct timespec time;
clock_getres(CLOCK_REALTIME, &res);
clock_gettime(CLOCK_REALTIME, &time);
printf("CLOCK_REALTIME: res.tv_sec=%lu res.tv_nsec=%lu\n", res.tv_sec, res.tv_nsec);
printf("CLOCK_REALTIME: time.tv_sec=%lu time.tv_nsec=%lu\n", time.tv_sec, time.tv_nsec);
}
It does provide nanoseconds; however, the resolution is 1000, so it is (in)effectively limited to microseconds:
CLOCK_REALTIME: res.tv_sec=0 res.tv_nsec=1000
CLOCK_REALTIME: time.tv_sec=1475279260 time.tv_nsec=525627000
You will need XCode 8 or later to be able to use this feature. Code compiled to use this feature will not run on versions of Mac OS X (10.11 or earlier).
Thanks for your posts
I think you can add the following lines
#ifdef __MACH__
#include <mach/mach_time.h>
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 0
int clock_gettime(int clk_id, struct timespec *t){
mach_timebase_info_data_t timebase;
mach_timebase_info(&timebase);
uint64_t time;
time = mach_absolute_time();
double nseconds = ((double)time * (double)timebase.numer)/((double)timebase.denom);
double seconds = ((double)time * (double)timebase.numer)/((double)timebase.denom * 1e9);
t->tv_sec = seconds;
t->tv_nsec = nseconds;
return 0;
}
#else
#include <time.h>
#endif
Let me know what you get for latency and granularity
Maristic has the best answer here to date. Let me simplify and add a remark. #include
and Init()
:
#include <mach/mach_time.h>
double conversion_factor;
void Init() {
mach_timebase_info_data_t timebase;
mach_timebase_info(&timebase);
conversion_factor = (double)timebase.numer / (double)timebase.denom;
}
Use as:
uint64_t t1, t2;
Init();
t1 = mach_absolute_time();
/* profiled code here */
t2 = mach_absolute_time();
double duration_ns = (double)(t2 - t1) * conversion_factor;
Such timer has latency of 65ns +/- 2ns
(2GHz CPU). Use this if you need "time evolution" of single execution. Otherwise loop your code 10000
times and profile even with gettimeofday()
, which is portable (POSIX), and has the latency of 100ns +/- 0.5ns
(though only 1us
granularity).
I tried the version with clock_get_time, and did cache the host_get_clock_service call. It's way slower than gettimeofday, it takes several microseconds per invocation. And, what's worse, the return value has steps of 1000, i.e. it's still microsecond granularity.
I'd advice to use gettimeofday, and multiply tv_usec by 1000.
Based on the open source mach_absolute_time.c we can see that the line extern mach_port_t clock_port;
tells us there's a mach port already initialized for monotonic time. This clock port can be accessed directly without having to resort to calling mach_absolute_time
then converting back to a struct timespec
. Bypassing a call to mach_absolute_time
should improve performance.
I created a small Github repo (PosixMachTiming) with the code based on the extern clock_port
and a similar thread. PosixMachTiming emulates clock_gettime
for CLOCK_REALTIME
and CLOCK_MONOTONIC
. It also emulates the function clock_nanosleep
for absolute monotonic time. Please give it a try and see how the performance compares. Maybe you might want to create comparative tests or emulate other POSIX clocks/functions?
As of at least as far back as Mountain Lion, mach_absolute_time()
returns nanoseconds and not absolute time (which was the number of bus cycles).
The following code on my MacBook Pro (2 GHz Core i7) showed that the time to call mach_absolute_time()
averaged 39 ns over 10 runs (min 35, max 45), which is basically the time between the return of the two calls to mach_absolute_time(), about 1 invocation:
#include <stdint.h>
#include <mach/mach_time.h>
#include <iostream>
using namespace std;
int main()
{
uint64_t now, then;
uint64_t abs;
then = mach_absolute_time(); // return nanoseconds
now = mach_absolute_time();
abs = now - then;
cout << "nanoseconds = " << abs << endl;
}
I found another portable solution.
Declare in some header file (or even in your source one):
/* If compiled on DARWIN/Apple platforms. */
#ifdef DARWIN
#define CLOCK_REALTIME 0x2d4e1588
#define CLOCK_MONOTONIC 0x0
#endif /* DARWIN */
And the add the function implementation:
#ifdef DARWIN
/*
* Bellow we provide an alternative for clock_gettime,
* which is not implemented in Mac OS X.
*/
static inline int clock_gettime(int clock_id, struct timespec *ts)
{
struct timeval tv;
if (clock_id != CLOCK_REALTIME)
{
errno = EINVAL;
return -1;
}
if (gettimeofday(&tv, NULL) < 0)
{
return -1;
}
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000;
return 0;
}
#endif /* DARWIN */
Don't forget to include <time.h>
.
void clock_get_uptime(uint64_t *result);
void clock_get_system_microtime( uint32_t *secs,
uint32_t *microsecs);
void clock_get_system_nanotime( uint32_t *secs,
uint32_t *nanosecs);
void clock_get_calendar_microtime( uint32_t *secs,
uint32_t *microsecs);
void clock_get_calendar_nanotime( uint32_t *secs,
uint32_t *nanosecs);
For MacOS you can find a good information on their developers page https://developer.apple.com/library/content/documentation/Darwin/Conceptual/KernelProgramming/services/services.html
精彩评论